![初中数学8上同步练习:等腰三角形练习含答案第1页](http://m.enxinlong.com/img-preview/2/3/13502621/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学8上同步练习:等腰三角形练习含答案第2页](http://m.enxinlong.com/img-preview/2/3/13502621/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学8上同步练习:等腰三角形练习含答案第3页](http://m.enxinlong.com/img-preview/2/3/13502621/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年13.3.1 等腰三角形精练
展开
这是一份2020-2021学年13.3.1 等腰三角形精练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
同步练习:等腰三角形 (60分)一、选择题(每题6分,共30分)1.[2016·中考预测]等腰三角形的一个内角是80°,则它的顶角的度数是 (B)A.80° B.80°或20°C.80°或50° D.20°2.[2015·内江]如图23-1,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为 (A)A.40° B.45° C.60° D.70°【解析】 ∵AE∥BD,∴∠CBD=∠E=35°,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.[2015·黄石]如图23-2,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD= (B)A.36° B.54°C.18° D.64°【解析】 ∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.4.如图23-3,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(D)A.6 B.7C.8 D.9【解析】 ∵∠ABC,∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB.∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN.∵MN=ME+EN,∴MN=BM+CN.∵BM+CN=9,∴MN=9,故选D.5.[2015·遂宁]如图23-4,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为 (C)A.1 cm B.2 cmC.3 cm D.4 cm【解析】 ∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7 cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4 cm,∴BC=7-4=3(cm).二、填空题(每题6分,共30分)6.[2014·丽水]如图23-5,在△ABC中,AB=AC,AD⊥BC于点D.若AB=6,CD=4,则△ABC的周长是__20__.7.[2015·绍兴]由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图23-6①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图23-6②,则此时A,B两点之间的距离是__18__cm.图23-6【解析】 ∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18 cm.8.[2015·乐山]如图23-7,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=__15__°.【解析】 ∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°-∠A)=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.9.[2014·益阳]如图23-8,将等边△ABC绕顶点A沿顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°__. 图23-8 图23-910.如图23-9,在等边△ABC中,AB=6,点D是BC的中点.将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为__3__.三、解答题(共8分)11.(8分)[2014·衡阳]如图23-10在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:△BED≌△CFD.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC.又∵BD=CD,∴△BED≌△CFD(AAS).(20分)12.(8分)如图23-11,点D,E在△ABC的边BC上,连结AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答)__①②⇒③;①③⇒②;②③⇒①__;(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)解:(2)选择①③⇒②,∵AB=AC,∴∠B=∠C,又∵BD=CE,∴△ABD≌△ACE,∴AD=AE.13.(12分)[2015·南充]如图23-12,△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D,E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B,在△AEF与△CEB中,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.(12分)14.(12分)[2015·铜仁]已知,如图23-13,点D在等边三角形ABC的边AB上,点F在边AC上,连结DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.图23-13证明:如答图所示,作DG∥BC交AC于G,则∠DGF=∠ECF,在△DFG和△EFC中,∴△DFG≌△EFC(AAS),∴GD=CE,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠B,∠AGD=∠ACB,∴∠A=∠ADG=∠AGD,∴△ADG是等边三角形,∴AD=GD,∴AD=CE.
相关试卷
这是一份初中数学人教版八年级上册15.3 分式方程随堂练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021学年第十二章 全等三角形12.1 全等三角形达标测试,共7页。试卷主要包含了选择题,填空题,解答题图22-9等内容,欢迎下载使用。
这是一份初中人教版13.3.1 等腰三角形测试题,共5页。