2022学年人教版数学七年级下册期末复习《二元一次方程组》专项练习(无答案)
展开
这是一份2022学年人教版数学七年级下册期末复习《二元一次方程组》专项练习(无答案),共6页。试卷主要包含了下列方程组,解方程组,关于x等内容,欢迎下载使用。
二元一次方程组题型一:二元一次方程的概念及求解1、已知(a-2)x-by|a|-1=5是关于x、y 的二元一次方程,则a=______,b=_____.2、若方程mx-2y=3x+4是关于x,y的二元一次方程,则m满足 3、二元一次方程3x+2y=15的正整数解为_______________.题型二:二元一次方程组的概念4、下列方程组:①,②,③,其中是二元一次方程组的是 题型三:二元一次方程组的求解5、若|2a+3b-7|与(2a+5b-1)2互为相反数,则a=______,b=______.6、2x-3y=4x-y=5的解为_______________.7、解方程组 题型四:列方程组求待定系数8、已知是方程组的解,则m2-n2的值为_________. 9、若方程组的解互为相反数,则k 的值为 。 10、 如果是方程组的解,下列各式中成立的是 ( ) A、a+4c=2 B、4a+c=2 C、a+4c+2=0 D、4a+c+2=0 题型五:同解问题11、若方程组与有相同的解,则a= ,b= 。 12、关于x和y的二元一次方程组和具有相同的解,求a,b的值. 类型六:错解问题13、甲、乙两人解方程组,甲因看错a,解得,乙将其中一个方程的b 写成了它的相反数,解得,求a、b 的值.14、阅读下面情境:甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为试求出a,b的正确值,并计算a2018+()2019的值. 题型七:涉及三个未知数的方程组15、已知==,且a+b-c=,则a=_______,b=_______,c=_______.16、若2a+5b+4c=0,3a+b-7c=0,则a+b-c = 。17、由方程组可得,x∶y∶z是( )A、1∶2∶1 B、1∶(-2)∶(-1) C、1∶(-2)∶1 D、1∶2∶(-1)题型八:方程组有解的情况方程组满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,无解。18、关于x、y的二元一次方程组没有解时,求m 19、二元一次方程组 有无数解,则m= ,n= 。 题型九:应用题行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米? 2、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
3、从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少? 4、汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间. 5、甲,乙两车分别以均匀的速度在周长为的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每相遇一次;当两车同向运动时,每相遇一次,求两车的速度。 6、两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
7、一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,(光速)1)求这列火车的长度和速度。2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长8、列快车长60米,一列慢车长80米,两车同向而行时,快车从追上慢车到完全离开慢车共用时20秒;若两车相向而行,则两车从相遇到离开时间为4秒。求两车每秒各行驶多少米? 工程问题
9、一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
商品销售利润问题
10、有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元? 11、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。则这次生意盈亏情况是( ) A、赚6元 B、不亏不赚 C、亏4元 D、亏24元 银行储蓄问题
12、小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
13、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%) 生产中的配套问题
14、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
增长率问题15、某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?
16、某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。
和差倍分问题17、“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?
18、两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。
19、一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少? 浓度问题
20、现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?
21、一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克? 几何问题
22、如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少? 23、用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?
年龄问题
24、今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?
25、今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.
优化方案问题
26、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?为什么?
27、某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
28、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
相关试卷
这是一份人教版数学七年级下册《二元一次方程组的解法》期末专项复习(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版数学七年级下册《二元一次方程组实际应用》期末专项复习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年人教版数学七年级下册期末复习《实数的运算》专项复习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。