![山东省临清市高中数学全套教学案数学必修1:3.1-1函数的单调性01](http://m.enxinlong.com/img-preview/3/3/12520567/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省临清市高中数学全套教学案数学必修1:3.1-1函数的单调性02](http://m.enxinlong.com/img-preview/3/3/12520567/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省临清市高中数学全套教学案数学必修1:3.1-1函数的单调性03](http://m.enxinlong.com/img-preview/3/3/12520567/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省临清市高中数学全套教学案数学必修1:3.1-1函数的单调性
展开学校:临清实验高中 学科:数学 编写人:赵福征
§1.3.1函数的单调性与最大(小)值(1)
第一课时 单调性
【教学目标】
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2. 学会运用函数图象理解和研究函数的性质;
3. 能够熟练应用定义判断与证明函数在某区间上的单调性.
【教学重点难点】
重点:函数的单调性及其几何意义.
难点:利用函数的单调性定义判断、证明函数的单调性
【教学过程】
(一)创设情景,揭示课题
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
2. 画出下列函数的图象,观察其变化规律:
(1)f(x) = x
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .[来源:高考学习网
(2)f(x) = -x+2
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(3)f(x) = x2
在区间 ____________ 上,
f(x)的值随着x的增大而 ________ .
在区间 ____________ 上,f(x)的值随
着x的增大而 ________ .
3、从上面的观察分析,能得出什么结论?
学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变
化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。
(二)研探新知
1、y = x2的图象在y轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢?
学生通过观察、思考、讨论,归纳得出:
函数y = x2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x1,x2,当x1<x2时,都有x12<x22 . 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。
2.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).
3、从函数图象上可以看到,y= x2的图象在y轴左侧是下降的,类比增函数的定义,你能概括出减函数的定义吗?
注意:
函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .
4.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:
(三)质疑答辩,发展思维。
根据函数图象说明函数的单调性.
例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单
调区间,以及在每一单调区间上,它是增函数还是减函数?
解:略
点评:从图像中看出函数的单调区间是立即单调性的基础。
变式训练1 函数在上的单调性为 ( )
A.减函数 B.增函数. C.先增后减. D.先减后增
例2 物理学中的玻意耳定律P=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。试用函数的单调性证明之。
分析:按题意,只要证明函数P=在区间(0,+∞)上是减函数即可。
证明:略
点评:实际问题与函数模型之间的关联十分密切,我们常常借助函数的单调性解决问题。
变式训练2 若函数在上是增函数,那么 ( )
A.b>0 B. b<0 C.m>0 D.m<0
例3.16.求证:函数,在区间上是减函数
解:设则
在区间上是减函数。
点评:利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
① 任取x1,x2∈D,且x1<x2;
② 作差f(x1)-f(x2);[来源:Zxxk.Com]
③变形(通常是因式分解和配方);
④定号(即判断差f(x1)-f(x2)的正负);
⑤下结论(即指出函数f(x)在给定的区间D上的单调性).
变式训练3.:画出反比例函数的图象.[来源:Zxxk.Com]
这个函数的定义域是什么?
它在定义域I上的单调性怎样?证明你的结论.
四、归纳小结
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取 值 → 作 差 → 变 形 → 定 号 → 下结论
【板书设计】
一、 函数单调性
二、 典型例题
例1: 例2:
小结:
【作业布置】完成本节课学案预习下一节。
§1.3.1函数的单调性与最大(小)值(1)
课前预习学案
一、预习目标:
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2.熟记函数单调性的定义
二、预习内容:
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
2.画出下列函数的图象,观察其变化规律:
(1)f(x) = x
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(2)f(x) = -x+2
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(3)f(x) = x2
在区间 ____________ 上,
f(x)的值随着x的增大而 ________ .
在区间 ____________ 上,f(x)的值随
着x的增大而 ________ .
3.一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,
(1)当x1<x2时,都有f(x1) f(x2),那么就说f(x)在区间D上是 函数
(2)当x1<x2时,都有f(x1) f(x2),那么就说f(x)在区间D上是 函数
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 | 疑惑内容 |
|
|
|
|
|
|
课内探究学案
一、学习目标
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2. 学会运用函数图象理解和研究函数的性质;
3. 能够熟练应用定义判断与证明函数在某区间上的单调性.
学习重点:函数的单调性及其几何意义.
学习难点:利用函数的单调性定义判断、证明函数的单调性
二、学习过程
例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单
调区间,以及在每一单调区间上,它是增函数还是减函数?
解:
变式训练1 函数在上的单调性为 ( )
A.减函数 B.增函数. C.先增后减. D.先减后增
例2 物理学中的玻意耳定律P=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。试用函数的单调性证明之。
证明:
变式训练2 若函数在上是增函数,那么 ( )
A.b>0 B. b<0 C.m>0 D.m<0
例3.证明函数在(1,+∞)上为增函数
解:
变式训练3.:画出反比例函数的图象.
这个函数的定义域是什么?
它在定义域I上的单调性怎样?证明你的结论.
三、当堂检测
1、函数的单调增区间为 ( )
A. B. C. D.
2、函数,当时是增函数,当时是减函数,则等于 ( )
A.-3 B.13 C.7 D.由m而定的常数
3、若函数在上是减函数,则的取值范围是 ( )
A. B. C. D.[来源:Z&xx&k.Com]
4、函数的减区间是____________________.
5、若函数在上是减函数,则的取值范围是______.
课后练习与提高
一、 选择题
1、下列函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
2、函数的单调减区间是 ( )
A. B. C. D.
二、填空题:
3、函数,上的单调性是_____________________.
4、已知函数在上递增,那么的取值范围是________.[来源:学.科.网]
三、解答题:
5、设函数为R上的增函数,令
(1)、求证:在R上为增函数
(2)、若,求证
参考答案
例一 略 变式训练一B
例二 略 变式训练二C
例三
解:设则
变式训练三略