高中数学人教版新课标A选修2-12.4抛物线测试题
展开这是一份高中数学人教版新课标A选修2-12.4抛物线测试题,
课题:抛物线 教学目标:理解抛物线的定义,抛物线的标准方程,抛物线的几何性质。教学重点: 抛物线的定义、四种方程及几何性质;四种方程的运用及对应性质的比较、辨别和应用,抛物线的几何性质的应用.(一) 主要知识及主要方法:(课本)()的几何意义是抛物线的焦准距(焦点到准线的距离).(课本)抛物线的通径:通过焦点并且垂直于对称轴的直线与抛物线两交点之间的线段叫做抛物线的通径.通径的长为,通径是过焦点最短的弦.(二)典例分析:问题1.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:过点;焦点在直线上;顶点在原点,对称轴为轴,抛物线上的点到焦点的距离等于;顶点在原点,对称轴为轴且截直线所得弦长为.问题2.在抛物线上找一点,使最小,其中,,求点的坐标及此时的最小值;已知抛物线和定点,抛物线上有一动点,到点的距离为,到抛物线准线的距离为,求的最小值及此时点的坐标.问题3.(全国Ⅱ)抛物线上一点的纵坐标为,则点与抛物线焦点的距离为 (海南)已知抛物线的焦点为,点,在抛物线上,且, 则有 定长为的线段的端点、在抛物线上移动,求线段的中点到轴距离的最小值.(全国Ⅰ)抛物线的点到直线距离的最小值是 问题4.(全国)直线和相交于点,,点.以、为端点的曲线段上的任一点到的距离与到点的距离相等.若为锐角三角形,,,且.建立适当的坐标系,求曲线段的方程.问题5.(全国Ⅲ) 设,两点在抛物线上,是的垂直平分线。(Ⅰ)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;(Ⅱ)当直线的斜率为时,求在轴上截距的取值范围.(四)课后作业: 点在抛物线上,则的最小值是已知点在抛物线上,点在圆上,则的最小值是 (届四川叙永一中阶段测试)过定点,且与抛物线只有一个公共点的直线方程为 抛物线的弦垂直于轴,若的长为,则焦点到的距离是 斜率为的直线被抛物线所截得线段中点的轨迹方程是 设抛物线的焦点为,经过点的直线交抛物线于、两点,点在抛物线的准线上,且∥轴.证明直线经过原点(届高三贵州绥阳中学第四次月考)如图,过抛物线:的焦点的直线与该抛物线交于、两点,若以线段为直径的圆与该抛物线的准线切于点.求抛物线的方程;求圆的方程. (五)走向高考:(上海)过抛物线的焦点作一条直线与抛物线相交于、两点,它们的横坐标之和等于,则这样的直线 有且仅有一条 有且仅有两条 有无穷多条 不存在(陕西)抛物线的准线方程是( ) (上海)已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 (全国Ⅰ)抛物线上的点到直线距离的最小值是 (山东)设是坐标原点,是抛物线的焦点,是抛物线 上的一点,与轴正向的夹角为,则为 (江西文)连接抛物线的焦点与点所得的线段与抛物线交于点,设点为坐标原点,则的面积为 (全国Ⅱ)设为抛物线的焦点,为该抛物线上三点,若,则 (四川)已知抛物线上存在关于直线对称的相异两点、,则等于 (全国Ⅰ)抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是 标准方程()()()()图形范围≥,≤,≥,≤,焦点准线焦半径对称轴轴轴顶点离心率
相关试卷
这是一份人教版新课标A4.1 圆的方程同步训练题,共7页。试卷主要包含了特殊地,的参数方程为等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修23.2 直线的方程同步训练题,共6页。试卷主要包含了 已知两点,等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修5第二章 数列综合与测试课堂检测,共6页。试卷主要包含了求下列数列的极限,等于,若,求和的值;,已知数列满足,,,… ,,如图,连结的各边中点等内容,欢迎下载使用。