- 1.4.2 充要条件 教学设计 教案 5 次下载
- 1.5.1全称量词与存在量词 教学课件 课件 5 次下载
- 1.5.2全称量词命题与存在量词命题的否定 教学课件 课件 4 次下载
- 1.5.2全称量词命题与存在量词命题的否定(教学设计) 教案 5 次下载
- 1.6集合与简易逻辑复习 教学课件 课件 3 次下载
人教A版 (2019)必修 第一册1.5 全称量词与存在量词教学设计
展开1.5.1全称量词与存在量词
(人教A版普通高中教科书数学必修第一册第一章)
一、教学目标
1.理解全称量词与存在量词的意义以及全称量词命题和存在量词命题的意义.
2.掌握全称量词命题与存在量词命题真假性的判定.
二、教学重难点
1. 教学重点:理解全称量词和存在量词的意义;
全称量词命题和存在命题真假的判定.
2. 教学难点:全称量词命题和存在命题真假的判定.
三、教学过程
我们知道,命题是可以判断真假的陈述句.在数学中,有时会遇到一些含有变量的陈述句,由于不知道变量代表什么数,无法判断真假,因此它们不是命题. 但是,如果在原语句的基础上,用一个短语对变量的取值范围进行限定,就可以使它们成为一个命题,我们把这样的短语称为量词.
1.全称量词和全称量词命题的概念
①概念的引入
下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?
(1);
(2)是整数;
(3)对所有的,;
(4)对任意一个,是整数.
结论:由命题的定义出发,(1)(2)不是命题,(3)(4)是命题.
分析(3)(4)分别用短语“对所有的”“对任意一个”对变量进行限定,从而使(3)(4)称为可以判断真假的语句.
②概念的形成
短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,用符号“”表示.
含有全称量词的命题,叫做全称量词命题.
例如:
(1)对任意,是奇数;
(2)所有的正方形都是矩形.
常见的全称量词还有:“一切”、“每一个”、“任给”、“所有的”等.
通常,将含有变量的语句用、、表示,变量的取值范围用表示.
全称量词命题“对中任意一个,有成立”.简记为:,
读作:任意属于,有成立.
③概念的巩固应用
例1判断下列全称量词命题的真假:
(1)所有的素数都是奇数;
(2) ;
(3)对任意一个无理数,也是无理数.
(学生练习——个别回答——教师点评并板书)
点评:要判定全称量词命题的真假,需要对取值范围内的每个元素,证明是否成立,若成立,则全称量词命题是真命题,否则为假.
2.存在量词和存在量词命题的概念
①概念的引入
下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?
(1);
(2)能被2和3整除;
(3)存在一个,使;
(4)至少有一个,能被2和3整除.
结论:由命题的定义出发,(1)(2)不是命题,(3)(4)是命题
分析(3)(4)分别用短语“存在一个”“至少有一个”对变量进行限定,从而使(3)(4)称为可以判断真假的语句.
②概念的形成
短语“存在一个”、“至少一个”在逻辑中通常叫做存在量词,用符号“”表示.
含有存在量词的命题,叫做存在量词命题.
例如:
(1)有的平行四边形是菱形;
(2)有一个素数不是奇数.
常见的存在量词还有“有些”、“有一个”、“对某个”、“有的”等.
存在量词命题“存在中的一个,使成立”.简记为:,
读作:存在一个属于,使成立.
③概念的巩固应用
例2 判断下列存在量词命题的真假.
(1)有一个实数,使;
(2)平面内存在两条相交直线垂直于同一条直线;
(3)有些平行四边形是菱形.
(学生回答——教师点评并板书)
点评:要判定存在量词命题是真命题,只需要在取值范围内找到一个元素,使成立即可.如果在中,使成立的元素不存在,则这个存在量词命题是假命题.
3.课堂练习
1.判断下列全称量词命题的真假.
(1)每个四边形的内角和都是360°;
(2)任何实数都有算术平方根;
(3)是无理数,是无理数.
2.判断下列存在量词命题的真假.
(1)存在一个四边形,它的两条对角线互相垂直;
(2)至少有一个整数,使得为奇数;
(3)是无理数,是无理数.
3.判断下列命题是全称量词命题还是存在量词命题,并判断真假.
(1)存在实数使;
(2)有些菱形是正方形;
(3)正数的绝对值是它本身;
(4)若,则.
4.课堂小结
1.全称量词与全称量词命题,存在量词与存在量词命题的概念;
2.如何判定全称量词命题与存在量词命题的真假性.
高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教学设计: 这是一份高中数学人教A版 (2019)必修 第一册<a href="/sx/tb_c4000259_t8/?tag_id=27" target="_blank">1.5 全称量词与存在量词教学设计</a>,共3页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教案: 这是一份高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词教案,共10页。
数学必修 第一册1.5 全称量词与存在量词优秀教学设计: 这是一份数学必修 第一册1.5 全称量词与存在量词优秀教学设计,共6页。教案主要包含了问题导入,预习课本,引入新课,新知探究,知识梳理,典例分析,课堂练习,课堂小结,板书设计,作业等内容,欢迎下载使用。