初中数学人教版七年级上册第四章 几何图形初步4.2 直线、射线、线段导学案
展开直线、射线、线段(基础)知识讲解
【学习目标】
1.理解直线、射线、线段的概念,掌握它们的区别和联系;
2. 利用直线、线段的性质解决相关实际问题;
3.利用线段的和差倍分解决相关计算问题.
【要点梳理】
要点一、直线
1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.
2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).
(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线.
3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.
要点诠释:
直线的特征:(1)直线没有长短,向两方无限延伸.
(2)直线没有粗细.
(3)两点确定一条直线.
(4)两条直线相交有唯一一个交点.
4.点与直线的位置关系:
(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.
(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.
要点二、线段
1.概念:直线上两点和它们之间的部分叫做线段.
2.表示方法:
(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.
(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.
3. “作一条线段等于已知线段”的两种方法:
法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.
4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.
如图6所示,在A,B两点所连的线中,线段AB的长度是最短的.
要点诠释:
(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.
(2)连接两点间的线段的长度,叫做这两点的距离.
(3)线段的比较:
①度量法:用刻度尺量出两条线段的长度,再比较长短.
②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.
5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C是线段AB的中点,则,或AB=2AC=2BC.
要点诠释:
若点C是线段AB的中点,则点C一定在线段AB上.
要点三、射线
1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.
如图8所示,直线l上点O和它一旁的部分是一条射线,点O是端点.
2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.
3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.
(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.
要点诠释:
(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA,射线OB是不同的射线.
(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA、射线OB、射线OC都表示同一条射线.
要点四、直线、射线、线段的区别与联系
1.直线、射线、线段之间的联系
(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.
(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.
2.三者的区别如下表
要点诠释:
(1) 联系与区别可表示如下:
(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.
【典型例题】
类型一、相关概念
1.下列说法中,正确的是( )
A.射线OA与射线AO是同一条射线
B.线段AB与线段BA是同一条线段
C.过一点只能画一条直线
D.三条直线两两相交,必有三个交点
【答案】B
【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.
【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.
举一反三:
【变式1】以下说法中正确的是 ( )
A.延长线段AB到C B.延长射线AB
C.直线AB的端点之一是A D.延长射线OA到C
【答案】A
【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.
【答案】
解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.
图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.
有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)
有1条直线:直线AC(或AB,BC).
类型二、有关作图
2.如图所示,线段a,b,且a>b.
用圆规和直尺画线段:(1)a+b;(2)a-b.
【答案与解析】
解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.
(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.
【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.
举一反三:
【变式1】如图,C是线段AB外一点,按要求画图:
(1)画射线CB;
(2)反向延长线段AB;
(3)连接AC,并延长AC至点D,使CD=AC.
【答案】
解:
【高清课堂:直线、射线、线段397363 按语句画图3(3)】
【变式2】用直尺作图:P是直线a外一点,过点P有一条线段b与直线a不相交.
【答案】
解:
类型三、有关条数及长度的计算
3.如图,A、B、C、D为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出 条直线.
【思路点拨】根据两点确定一条直线即可计算出直线的条数.
【答案】6条直线
【解析】由两点确定一条直线知,点A与B,C,D三点各确定一条直线,同理点B与C、D各确定一条直线,C与D确定一条直线,综上:共有直线:3+2+1=6(条).
【总结升华】平面上有个点,其中任意三点不在一条直线上,则最多确定的直线条数为:.
举一反三:
【变式1】如图所示,已知线段AB上有三个定点C、D、E.
(1)图中共有几条线段?
(2)如果在线段CD上增加一点,则增加了几条线段?你能从中发现什么规律吗?
【答案】
解:(1)线段的条数:4+3+2+1=10(条);
(2)如果在线段CD上增加一点P,则P与其它五个点各组成一条线段,因此,增加了5条线段.
(注解:若在线段AB上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB上增加到n个点(即增加n-2个点)时,线段的总条数为1+2+……+(n-1)=n(n-1) .)
【变式2】)如图直线m上有4个点A、B、C、D,则图中共有________条射线.
【答案】8
4.已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.
【思路点拨】根据M、N分别为AC、BC的中点,根据AC、BC的长求出MC与CN的长,由MC+CN求出MN的长即可.
【答案与解析】
解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,
∴MC=AC=3.5cm,CN=BC=2.5cm,
则MN=MC+CN=3.5+2.5=6(cm).
【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.
【高清课堂:直线、射线、线段397363画图计算例2】
举一反三:
【变式】在直线l上按指定方向依次取点A、B、C、D,且使AB:BC:CD=2:3:4,如图所示,若AB的中点M与CD的中点N的距离是15cm,求AB的长.
【答案】
解:依题意,设AB=2x cm,那么BC=3x cm,CD=4x cm.则有:
MN=BM+BC+CN= x+3x+2x=15
解得:
所以AB=2x =cm.
类型四、最短问题
5.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )
A.A→C→D→B B. A→C→F→B C. A→C→E→F→B D. A→C→M→B
【答案】B.
【解析】
根据两点之间的线段最短,
可得C、B两点之间的最短距离是线段CB的长度,
所以想尽快赶到书店,一条最近的路线是:A→C→F→B.
【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.
举一反三:
【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?
(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.
【答案】
解:(1)河道的长度变小了.
(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.
35直线、射线、线段(提高)知识讲解学案: 这是一份35直线、射线、线段(提高)知识讲解学案,共7页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
34直线、射线、线段(基础)知识讲解学案: 这是一份34直线、射线、线段(基础)知识讲解学案,共7页。学案主要包含了学习目标,要点梳理,典型例题,总结升华,答案与解析,思路点拨等内容,欢迎下载使用。
北师大版七年级上册4.1 线段、射线、直线导学案及答案: 这是一份北师大版七年级上册4.1 线段、射线、直线导学案及答案,文件包含线段射线直线基础知识讲解doc、线段射线直线基础巩固练习doc等2份学案配套教学资源,其中学案共10页, 欢迎下载使用。