![人教版数学八年级上14.1.1 同底数幂的乘法2 教案01](http://img-preview.51jiaoxi.com/2/3/6023227/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学14.1.1 同底数幂的乘法教学设计
展开教学目标:理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.
教学重点与难点:正确理解同底数幂的乘法法则以及适用范围.
教学过程:
一、回顾幂的相关知识
an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
二、创设情境,感觉新知
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
学生分析,总结结果
1012×103= ()×(10×10×10) == 1015.
通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
学生动手:
计算下列各式:(1)25×22 (2)a3·a2 (3) 5m·5n(m、n都是正整数)
教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.
得到结论:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:
am·an= ()·() = () = am+n
am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加
例1.计算:(1)103×104; (2)a • a3 (3)a • a3•a5 (4) xm×x3m+1
例2.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a·(-a)3
(4)-a3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5
例3. (1)已知am=3,am=8,求am+n 的值.
(2)若3n+3=a,请用含a的式子表示3n的值.
(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.
三、小结:
同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.
注意两点:一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,即am·an = am+n(m、n是正整数).
人教版八年级上册14.1.1 同底数幂的乘法教学设计: 这是一份人教版八年级上册14.1.1 同底数幂的乘法教学设计,共4页。
数学八年级上册14.1.1 同底数幂的乘法教学设计: 这是一份数学八年级上册14.1.1 同底数幂的乘法教学设计,共5页。教案主要包含了学情分析,教学目标分析,教学方法分析,教学过程分析,板书设计,教学设计反思等内容,欢迎下载使用。
人教版八年级上册14.1.1 同底数幂的乘法教学设计: 这是一份人教版八年级上册14.1.1 同底数幂的乘法教学设计,共2页。教案主要包含了创设情境,提出问题,形成法则,应用新知,体验成功,变式训练,激发情智,小结等内容,欢迎下载使用。