数学必修11.1.1集合的含义与表示第2课时课时作业
展开知识点一 列举法
思考 要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?
答案 把它们一一列举出来.
梳理 把集合中的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.适用于元素较少的集合.
知识点二 描述法
思考 能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?
答案 不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.
梳理 描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写元素的一般符号及取值(或变化)范围,竖线后写元素所具有的共同特征.
1.eq \b\lc\{\rc\}(\a\vs4\al\c1(1))=1.(×)
2.eq \b\lc\{\rc\}(\a\vs4\al\c1(1,2))=eq \b\lc\{\rc\}(\a\vs4\al\c1(x=1,y=2)).(×)
3.eq \b\lc\{\rc\}(\a\vs4\al\c1(x∈R|x>1))=eq \b\lc\{\rc\}(\a\vs4\al\c1(y∈R|y>1)).(√)
4.eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x2=1))=eq \b\lc\{\rc\}(\a\vs4\al\c1(-1,1)).(√)
类型一 用列举法表示集合
例1 用列举法表示下列集合.
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合.
考点 用列举法表示集合
题点 用列举法表示数集
解 (1)设小于10的所有自然数组成的集合为A,
那么A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,
那么B={0,1}.
反思与感悟 (1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.
(2)元素个数少且有限时,全部列举,如{1,2,3,4}.
跟踪训练1 用列举法表示下列集合.
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由1~20以内的所有素数组成的集合.
考点 用列举法表示集合
题点 用列举法表示数集
解 (1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.
(2)设由1~20以内的所有素数组成的集合为C,
那么C={2,3,5,7,11,13,17,19}.
类型二 用描述法表示集合
例2 试用描述法表示下列集合.
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
考点 用描述法表示集合
题点 用描述法表示有限数集
解 (1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.
(2)设大于10小于20的整数为x,
它满足条件x∈Z,且10
用描述法表示函数y=x2-2图象上所有的点组成的集合.
解 {(x,y)|y=x2-2}.
反思与感悟 用描述法表示集合时应注意的四点
(1)写清楚该集合中元素的代号;
(2)说明该集合中元素的性质;
(3)所有描述的内容都可写在集合符号内;
(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.
跟踪训练2 用描述法表示下列集合.
(1)方程x2+y2-4x+6y+13=0的解集;
(2)平面直角坐标系中坐标轴上的点组成的集合.
考点 用描述法表示集合
题点 用描述法表示点集
解 (1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.
所以方程的解集为{(x,y)|x=2,y=-3}.
(2)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.
类型三 集合表示的综合应用
命题角度1 选择适当的方法表示集合
例3 用适当的方法表示下列集合.
(1)由x=2n,0≤n≤2且n∈N组成的集合;
(2)抛物线y=x2-2x与x轴的公共点的集合;
(3)直线y=x上去掉原点的点的集合.
考点 集合的表示综合
题点 用适当的方法表示集合
解 (1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.
(2)列举法:{(0,0),(2,0)}.
(3)描述法:{(x,y)|y=x,x≠0}.
反思与感悟 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.
跟踪训练3 若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.
考点 集合的表示综合
题点 用另一种方法表示集合
答案 {2 000,2 001,2 004}
解析 由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.
命题角度2 新定义的集合
例4 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]=eq \b\lc\{\rc\}(\a\vs4\al\c1(5n+k|n∈Z)),k=0,1,2,3,4,给出如下四个结论:
①2 016∈[1];
②-3∈[3];
③若整数a,b属于同一“类”,则a-b∈[0];
④若a-b∈[0],则整数a,b属于同一“类”.
其中,正确结论的个数是( )
A.1 B.2 C.3 D.4
考点 用描述法表示集合
题点 用描述法表示与余数有关的整数集合
答案 C
解析 由于[k]=eq \b\lc\{\rc\ (\a\vs4\al\c1(5n+k|n∈Z|)),
对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;
对于②,-3=-5+2,被5除余2,∴②错误;
对于③,∵a,b是同一“类”,可设a=5n1+k,b=5n2+k,则a-b=5(n1-n2)能被5整除,∴a-b∈[0],
∴③正确;
对于④,若a-b∈[0],则可设a-b=5n,n∈Z,即a=5n+b,n∈Z,不妨令b=5m+k,m∈Z,k=0,1,2,3,4,
则a=5n+5m+k=5(m+n)+k,m∈Z,n∈Z,
∴a,b属于同一“类”,∴④正确,
则正确的有①③④,共3个.
反思与感悟 命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解应用此定义,在新的情况下完成某种推理证明或指定要求.
跟踪训练4 定义集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A※B中的所有元素之和为________.
考点 集合的表示综合
题点 用另一种方法表示集合
答案 6
解析 由题意得t=0,2,4,即A※B={0,2,4},
又0+2+4=6,故集合A※B中的所有元素之和为6.
1.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
考点 集合的表示综合
题点 用另一种方法表示集合
答案 B
2.一次函数y=x-3与y=-2x的图象的交点组成的集合是( )
A.{1,-2} B.{x=1,y=-2}
C.{(-2,1)} D.{(1,-2)}
考点 用列举法表示集合
题点 用列举法表示点集
答案 D
3.第一象限中的点组成的集合可以表示为( )
A.{(x,y)|xy>0}
B.{(x,y)|xy≥0}
C.{(x,y)|x>0且y>0}
D.{(x,y)|x>0或y>0}
考点 集合的表示综合
题点 用另一种方法表示集合
答案 C
4.设A={x∈N|1≤x<6},则A用列举法可表示为________.
考点 集合的表示综合
题点 用另一种方法表示集合
答案 eq \b\lc\{\rc\}(\a\vs4\al\c1(1,2,3,4,5))
5.(2017·山东青岛高一检测)已知A=eq \b\lc\{\rc\}(\a\vs4\al\c1(x,y|x+y=6,x∈N,y∈N)),用列举法表示为A=______________.
考点 集合的表示综合
题点 用另一种方法表示集合
答案 eq \b\lc\{\rc\}(\a\vs4\al\c1(0,6,1,5,2,4,3,3,4,2,5,1,6,0))
1.在用列举法表示集合时应注意:
(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集.若集合中的元素个数比较少,则用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.
2.在用描述法表示集合时应注意:
(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;
(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.
一、选择题
1.方程组eq \b\lc\{\rc\ (\a\vs4\al\c1(x+y=3,,x-y=-1))的解集不可以表示为( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(x,y\b\lc\|\rc\ (\a\vs4\al\c1(\b\lc\{\rc\ (\a\vs4\al\c1(x+y=3,,x-y=-1))))))
B.eq \b\lc\{\rc\}(\a\vs4\al\c1(x,y\b\lc\|\rc\ (\a\vs4\al\c1(\b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y=2))))))
C.{1,2}
D.{(1,2)}
考点 集合的表示综合
题点 用适当的方法表示集合
答案 C
解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C不符合.
2.集合A={x∈Z|-2
考点 用描述法表示集合
题点 用描述法表示有限数集
答案 D
解析 因为A={x∈Z|-2
3.集合{(x,y)|y=2x-1}表示( )
A.方程y=2x-1
B.点(x,y)
C.平面直角坐标系中的所有点组成的集合
D.函数y=2x-1图象上的所有点组成的集合
考点 用描述法表示集合
题点 用描述法表示点集
答案 D
解析 集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.
4.已知x,y为非零实数,则集合M=eq \b\lc\{\rc\}(\a\vs4\al\c1(m\b\lc\|\rc\ (\a\vs4\al\c1(m=\f(x,|x|)+\f(y,|y|)+\f(xy,|xy|)))))为( )
A.{0,3} B.{1,3}
C.{-1,3} D.{1,-3}
考点 集合的表示综合
题点 用另一种方法表示集合
答案 C
解析 当x>0,y>0时,m=3,
当x<0,y<0时,m=-1-1+1=-1.
当x,y异号,不妨设x>0,y<0时,
m=1+(-1)+(-1)=-1.
因此m=3或m=-1,则M={-1,3}.
5.下列选项中,集合M,N相等的是( )
A.M={3,2},N={2,3}
B.M={(3,2)},N={(2,3)}
C.M={3,2},N={(3,2)}
D.M={(x,y)|x=3且y=2},N={(x,y)|x=3或y=2}
考点 集合的表示综合
题点 集合的表示综合问题
答案 A
解析 元素具有无序性,A正确;点的横坐标、纵坐标是有序的,B选项两集合中的元素不同;C选项中集合M中元素是两个数,N中元素是一个点,不相等;D选项中集合M中元素是一个点(3,2),而N中元素是两条直线x=3和y=2上所有的点,不相等.
6.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x是小于18的正奇数))
B.eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x=4k+1,k∈Z,且k<5))
C.eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x=4t-3,t∈N,且t≤5))
D.eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x=4s-3,s∈N*,且s≤5))
考点 集合的表示综合
题点 用另一种方法表示集合
答案 D
解析 对于x=4s-3,当s依次取1,2,3,4,5时,
恰好对应的x的值为1,5,9,13,17.
7.已知集合A=eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x=2m-1,m∈Z)),B=eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x=2n,n∈Z)),且x1,x2∈A,x3∈B,则下列判断不正确的是( )
A.x1·x2∈A B.x2·x3∈B
C.x1+x2∈B D.x1+x2+x3∈A
考点 用描述法表示集合
题点 用描述法表示与余数有关的整数集合
答案 D
解析 ∵集合A表示奇数集,集合B表示偶数集,
∴x1,x2是奇数,x3是偶数,
∴x1+x2+x3为偶数,故D错误.
8.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是( )
A.18 B.17 C.16 D.15
答案 B
解析 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.
二、填空题
9.集合{x∈N|x2+x-2=0}用列举法可表示为________.
考点 集合的表示综合
题点 用另一种方法表示集合
答案 {1}
解析 由x2+x-2=0,得x=-2或x=1.
又x∈N,∴x=1.
10.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为________.
考点 集合的表示综合
题点 用适当的方法表示集合
答案 3
解析 根据x∈A,y∈A,x+y∈A,知集合B={(1,1),(1,2),(2,1)},有3个元素.
11.定义集合A-B={x|x∈A,且x∉B},若集合A={x|2x+1>0},集合B=eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(\f(x-2,3)<0)))),则集合A-B=________.
考点 集合的表示综合
题点 集合的表示综合问题
答案 {x|x≥2}
解析 A=eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x>-\f(1,2))))),B={x|x<2},
A-B=eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(x>-\f(1,2)且x≥2))))={x|x≥2}.
三、解答题
12.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.
考点 用描述法表示集合
题点 用描述法表示集合的综合问题
解 因为三个集合中代表的元素性质互不相同,
所以它们是互不相同的集合.理由如下:
集合A中代表的元素是x,满足条件y=x2+3中的x∈R,所以A=R;
集合B中代表的元素是y,满足条件y=x2+3中y的取值范围是y≥3,所以B={y|y≥3}.
集合C中代表的元素是(x,y),这是个点集,这些点在抛物线y=x2+3上,所以C={P|P是抛物线y=x2+3上的点}.
13.用适当的方法表示下列集合:
(1)大于2且小于5的有理数组成的集合;
(2)24的所有正因数组成的集合;
(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.
考点 集合的表示综合
题点 用适当的方法表示集合
解 (1)用描述法表示为{x|2
(3)在平面直角坐标系内,点(x,y)到x轴的距离为|y|,到y轴的距离为|x|,
所以该集合用描述法表示为{(x,y)||y|=|x|}.
四、探究与拓展
14.已知集合A={x|x=3m,m∈N*},B={x|x=3m-1,m∈N*},C={x|x=3m-2,m∈N*},若a∈A,b∈B,c∈C,则下列结论中可能成立的是( )
A.2 006=a+b+c B.2 006=abc
C.2 006=a+bc D.2 006=a(b+c)
考点 用描述法表示集合
题点 用描述法表示与余数有关的整数集合
答案 C
解析 由于2 006=3×669-1,不能被3整除,
而a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不满足;
abc=3m1(3m2-1)(3m3-2)不满足;
a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;
a(b+c)=3m1(3m2-1+3m3-2)不满足.
故选C.
15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P+Q.
考点 集合的表示综合
题点 用另一种方法表示集合
解 ∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;
当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;
当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.
∴P+Q={1,2,3,4,6,7,8,11}.
高中数学人教版新课标A必修11.1.1集合的含义与表示巩固练习: 这是一份高中数学人教版新课标A必修11.1.1集合的含义与表示巩固练习,共12页。
数学必修11.1.1集合的含义与表示练习题: 这是一份数学必修11.1.1集合的含义与表示练习题,共4页。
2020-2021学年1.1.1集合的含义与表示当堂达标检测题: 这是一份2020-2021学年1.1.1集合的含义与表示当堂达标检测题,共2页。试卷主要包含了用适当的符号填空,试选择适当的方法表示下列集合,已知集合,试用列举法表示集合A,给出下列集合等内容,欢迎下载使用。