|课件下载
搜索
    上传资料 赚现金
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.2
    立即下载
    加入资料篮
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.201
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.202
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.203
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.204
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.205
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.206
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.207
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.3.208
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt

    展开
    这是一份人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt,共32页。PPT课件主要包含了f′x<0,f′x>0,极大值点,极小值点,极大值,极小值,题型一求函数的极值,等价转化思想的应用,所以a=9,故b=-1c=3等内容,欢迎下载使用。

    1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.
    知识梳理 自主学习
    题型探究 重点突破
    当堂检测 自查自纠
    知识梳理 自主学习
    知识点一 极值点与极值的概念(1)极小值点与极小值如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧 ,右侧 ,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值如(1)中图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧 ,右侧 ,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值. 、 统称为极值点, 和 统称为极值.
    思考 极大值一定大于极小值吗?答案 不一定.
    知识点二 求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是 .(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是 .
    题型探究 重点突破
    解 函数的定义域为R.
    当x变化时,f′(x),f(x)的变化情况如下表:
    由上表可以看出:当x=-1时,函数有极小值,且极小值为f(-1)=-3;当x=1时,函数有极大值,且极大值为f(1)=-1.
    令f′(x)=0,得x=-1,或x=1.
    求可导函数f(x)的极值的步骤:(1)确定函数的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义域分成若干个小开区间,并列成表格.检测f′(x)在方程根左右两侧的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.
    令f′(x)=0,得x=1.当x变化时,f′(x)与f(x)的变化情况如下表:
    因此当x=1时,f(x)有极小值f(1)=3.
    题型二 利用函数极值确定参数的值例2  已知函数f(x)=ax3+bx2+cx(a≠0)在x=±1处取得极值,且f(1)=-1.(1)求常数a,b,c的值;解 f′(x)=3ax2+2bx+c.∵x=±1是函数f(x)的极值点,∴x=±1是方程f′(x)=3ax2+2bx+c=0的两根,
    又f(1)=-1,∴a+b+c=-1.  ③
    (2)判断x=±1是函数的极大值点还是极小值点,试说明理由,并求出极值.
    当x<-1或x>1时,f′(x)>0,当-1(1)利用函数的极值确定参数的值,常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为“导数值等于零”不是“此点为极值点”的充要条件,所以利用待定系数法求解后,必须验证根的合理性.
    跟踪训练2 已知函数f(x)=ax3+bx2+cx在x=x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(1)x0的值;解 由图象可知,在(-∞,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)>0.故f(x)在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,因此f(x)在x=1处取得极大值,所以x0=1.
    (2)a,b,c的值.解 f′(x)=3ax2+2bx+c,由f′(1)=0,f′(2)=0,f(1)=5,
    解得a=2,b=-9,c=12.
    题型三 函数极值的综合应用例3 设函数f(x)=x3-6x+5,x∈R.(1)求函数f(x)的单调区间和极值;解 f′(x)=3x2-6,令f′(x)=0,
    (2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.解 由(1)的分析知y=f(x)的图象的大致形状及走向如图所示.
    直线y=a与y=f(x)的图象有三个不同的交点,即方程f(x)=a有三个不同的实根.
    反思与感悟 用求导的方法确定方程根的个数,是一种很有效的方法.它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数.
    跟踪训练3 设a为实数,函数f(x)=-x3+3x+a.(1)求f(x)的极值;解 f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.因为当x∈(-∞,-1)时,f′(x)<0,当x∈(-1,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,所以f(x)的极小值为f(-1)=a-2,极大值为f(1)=a+2.
    (2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a的值;若不存在,请说明理由.
    解 因为f(x)在(-∞,-1)内单调递减,且当x→-∞时,f(x)→+∞,f(x)在(1,+∞)内单调递减,且当x→+∞时,f(x)→-∞,而a+2>a-2,即函数的极大值大于极小值,所以当极大值等于0时,极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a+2=0,a=-2,如图1所示.
    当极小值等于0时,极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a-2=0,a=2,如图2所示.综上所述,当a=2或a=-2时,方程f(x)=0恰有两个实数根.
    分析 (1)对原函数求导,将导函数问题转化为由二次函数的根的分布探求开口方向的问题,从而证得a>0;(2)利用x1,x2为导函数的两个根,将0<x1<1<x2<2等价转化为不等式组,利用线性规划求a+2b的最大值与最小值.(1)证明 由函数f(x)在x=x1处取得极大值,在x=x2处取得极小值,知x1,x2是f′(x)=0的两个根.由题意,得f′(x)=ax2-2bx+2-b,所以f′(x)=a(x-x1)(x-x2).由题意,知在x=x1的左侧有f′(x)>0.由x-x1<0,x-x2<0,得a>0.
    此不等式组表示的区域为平面aOb上三条直线2-b=0,a-3b+2=0,4a-5b+2=0所围成的△ABC的内部,如图所示.
    1.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)(  )A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点解析 f′(x)的符号由正变负,则f(x0)是极大值,f′(x)的符号由负变正,则f(x0)是极小值,由图象易知有两个极大值点,两个极小值点.
    2.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的极值情况为(  )
    解析 f′(x)=3x2-2px-q,根据题意,知x=1是函数的一个极值点,
    所以f′(x)=3x2-4x+1.
    当x=1时,f(x)有极小值为0,故选A.答案 A
    3.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(   )A.-12 D.a<-3或a>6解析 f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.
    4.设函数f(x)=6x3+3(a+2)x2+2ax.若f(x)的两个极值点为x1,x2,且x1x2=1,则实数a的值为______.解析 f′(x)=18x2+6(a+2)x+2a.
    若b=1,c=-1,则f′(x)=-x2+2x-1=-(x-1)2≤0,此时f(x)没有极值;若b=-1,c=3,则f′(x)=-x2-2x+3=-(x+3)(x-1),当-3<x<1时,f′(x)>0,当x>1时,f′(x)<0.
    相关课件

    人教版新课标A选修1-23.2复数代数形式的四则运算复习ppt课件: 这是一份人教版新课标A选修1-23.2复数代数形式的四则运算复习ppt课件,共38页。PPT课件主要包含了解析答案,反思与感悟,解得x=0或x=1,所以y=9是公切线,又因为0a1等内容,欢迎下载使用。

    数学选修1-23.2复数代数形式的四则运算课堂教学ppt课件: 这是一份数学选修1-23.2复数代数形式的四则运算课堂教学ppt课件,共24页。PPT课件主要包含了αxα-1,cosx,-sinx,axlna,=4032x,解y′=0,2y=5x,数形结合思想的应用等内容,欢迎下载使用。

    人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件: 这是一份人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件,共23页。PPT课件主要包含了知识点导数运算法则,方程思想的应用,ln2-1,x-y+1=0等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map