|课件下载
搜索
    上传资料 赚现金
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升
    立即下载
    加入资料篮
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升01
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升02
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升03
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升04
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升05
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升06
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升07
    高中数学(人教版选修1-1)配套课件:第3章 导数及其应用章末复习提升08
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修1-23.2复数代数形式的四则运算复习ppt课件

    展开
    这是一份人教版新课标A选修1-23.2复数代数形式的四则运算复习ppt课件,共38页。PPT课件主要包含了解析答案,反思与感悟,解得x=0或x=1,所以y=9是公切线,又因为0a1等内容,欢迎下载使用。

    知识网络 整体构建
    要点归纳 主干梳理
    题型探究 重点突破
    知识网络 整体构建
    要点归纳 主干梳理
    2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x=x0;P点坐标适合切线方程,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.
    4.判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分条件.
    5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧邻近区域而言的.(2)连续函数f(x)在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.
    6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a,b]上连续的函数f(x),在[a,b]上必有最大值与最小值;但在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值,例如:f(x)=x3,x∈(-1,1).(2)求函数最值的步骤一般地,求函数y=f(x)在[a,b]上最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是函数的最值.
    题型探究 重点突破
    题型一 导数几何意义的应用导数几何意义的应用,主要体现在与切线方程有关的问题上.利用导数的几何意义求切线方程的关键是弄清楚所给的点是不是切点,常见类型有两种:一种是求“在某点处的切线方程”,此点一定为切点,先求导,再求斜率,进而求出切线方程;另一种是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-x1).①又已知y1=f(x1)②由①②求出x1,y1的值,即求出了过点P(x0,y0)的切线方程.切线问题是高考的热点内容之一,在高考试题中既有选择题、填空题,也有综合性大题,难度一般为中等.
    例1 已知函数f(x)=x-aln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.
    ∴y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1), 即x+y-2=0.
    ①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值; ②当a>0时,由f′(x)=0,解得x=a; ∵x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0 ∴f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值.
    ∴f(1)=1,f′(1)=-1,
    跟踪训练1 已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,直线m∶y=kx+9,且f′(-1)=0.(1)求a的值;解 因为f′(x)=3ax2+6x-6a,且f′(-1)=0,所以3a-6-6a=0,得a=-2.
    (2)是否存在实数k,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
    解 因为直线m过定点(0,9),先求过点(0,9),且与曲线y=g(x)相切的直线方程.
    当x0=1时,g′(1)=12,g(x)=21,切点坐标为(1,21),所以切线方程为y=12x+9;当x0=-1时,g′(-1)=0,g(-1)=9,切点坐标为(-1,9),所以切线方程为y=9.
    下面求曲线y=f(x)的斜率为12和0的切线方程:因为f(x)=-2x3+3x2+12x-11,由f′(x)=12,得-6x2+6x+12=12,当x=0时,f(0)=-11,此时切线方程为y=12x-11;当x=1时,f(1)=2,此时切线方程为y=12x-10.所以y=12x+9不是公切线.由f′(x)=0,得-6x2+6x+12=0,当x=-1时,f(-1)=-18,此时切线方程为y=-18;当x=2时,f(2)=9,此时切线方程为y=9,综上所述,当k=0时,y=9是两曲线的公切线.
    所以f′(x)=-6x2+6x+12.
    解得x=-1或x=2.
    题型二 应用导数求函数的单调区间在区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在区间(a,b)内单调递增;在区间(a,b)内,如果f′(x)<0,那么函数y=f(x)在区间(a,b)内单调递减.
    解 由题意知,f(x)的定义域是(0,+∞),
    设g(x)=x2-ax+2,二次方程g(x)=0的判别式Δ=a2-8.
    此时f(x)是(0,+∞)上的单调递增函数.
    此时f(x)也是(0,+∞)上的单调递增函数.
    当x变化时,f′(x)、f(x)的变化情况如下表:
    求解函数y=f(x)单调区间的步骤:(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.特别要注意定义域,写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接.
    (1)求f(x)的单调区间;解 函数f(x)的定义域为(-∞,+∞),
    当x<0时,f′(x)>0;当x>0时f′(x)<0.所以f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).
    (2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.
    同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2,由(1),知x1∈(-∞,0),x2∈(0,1).下面证明∀x∈(0,1),f(x)<f(-x),
    当x∈(0,1)时,g′(x)<0,g(x)单调递减,
    所以∀x∈(0,1),f(x)<f(-x).又因为x2∈(0,1),所以f(x2)<f(-x2),从而f(x1)<f(-x2).因为x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,所以x1<-x2,即x1+x2<0.
    题型三 利用导数求函数的极值和最值1.利用导数求函数极值的一般步骤(1)确定函数f(x)的定义域;(2)解方程f′(x)=0的根;(3)检验f′(x)=0的根的两侧f′(x)的符号.若左正右负,则f(x)在此根处取得极大值;若左负右正,则f(x)在此根处取得极小值;否则,此根不是f(x)的极值点.
    2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤(1)求f(x)在(a,b)内的极值;(2)将(1)求得的极值与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f(x)在[a,b]上单调时,其最小值、最大值在区间端点取得;②当f(x)在(a,b)内只有一个极值点时,若在这一点处f(x)有极大(小)值,则可以断定f(x)在该点处取得最大(小)值, 这里(a,b)也可以是(-∞,+∞).
    例3 已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x= 时取极大值.(1)求函数y=f(x)在x=-2时对应的切线方程;解 f′(x)=-3x2+2ax+b,
    当x=-2时,f(-2)=2,即切点为(-2,2).又因为切线斜率k=f′(-2)=-8,所以,所求切线方程为y-2=-8(x+2),
    函数分别取得极小值、极大值,
    即8x+y+14=0.
    (2)求函数y=f(x)在[-2,1]上的最大值与最小值.解 当x变化时,f′(x),f(x)的变化情况如下表:
    (1)若f(x)在x=2时取得极值,求a的值;
    因为f(x)的定义域是(0,+∞),所以当x∈(0,2)时,f′(x)<0;当x∈(2,+∞),f′(x)>0,所以当a=4时,x=2是一个极小值点,则a=4.
    (2)求f(x)的单调区间;
    所以当a≤0时,f(x)的单调递增区间为(0,+∞).
    题型四 导数与函数、不等式的综合应用利用导数研究函数是高考的必考内容,也是高考的重点、热点.考题利用导数作为工具,考查求函数的单调区间、函数的极值与最值,参数的取值范围等问题,若以选择题、填空题出现,以中低档题为主;若以解答题形式出现,则难度以中档以上为主,有时也以压轴题的形式出现.考查中常渗透函数、不等式等有关知识,综合性较强.
    (1)求函数f(x)的单调区间和极值;解 f′(x)=-x2+4ax-3a2=-(x-a)(x-3a).当x变化时,f′(x)、f(x)的变化情况如下表:
    令f′(x)=0,得x=a或x=3a.
    ∴f(x)在(-∞,a)和(3a,+∞)上是减函数,在(a,3a)上是增函数.
    当x=3a时,f(x)取得极大值,f(x)极大值=f(3a)=b.
    (2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围;解 f′(x)=-x2+4ax-3a2,其对称轴为x=2a.因为0(3)当a= 时,关于x的方程f(x)=0在区间[1,3]上恒有两个相异的实根,求实数b的取值范围.
    要使f(x)=0在[1,3]上恒有两个相异实根,即f(x)在(1,2),(2,3)上各有一个实根,
    因为x∈[-2,1],所以f′(x)≤0,即函数f(x)在区间[-2,1]上单调递减.
    则f′(x)=x2-4.
    相关课件

    数学选修1-23.2复数代数形式的四则运算课堂教学ppt课件: 这是一份数学选修1-23.2复数代数形式的四则运算课堂教学ppt课件,共24页。PPT课件主要包含了αxα-1,cosx,-sinx,axlna,=4032x,解y′=0,2y=5x,数形结合思想的应用等内容,欢迎下载使用。

    人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt: 这是一份人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt,共32页。PPT课件主要包含了f′x<0,f′x>0,极大值点,极小值点,极大值,极小值,题型一求函数的极值,等价转化思想的应用,所以a=9,故b=-1c=3等内容,欢迎下载使用。

    人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件: 这是一份人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件,共23页。PPT课件主要包含了知识点导数运算法则,方程思想的应用,ln2-1,x-y+1=0等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map