- 八年级下册数学人教版第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定 课时2 三角形的中位线 课件 课件 14 次下载
- 八年级下册数学人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形 课时1 矩形及其性质 课件 课件 13 次下载
- 八年级下册数学人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形 课时1 菱形及其性质 课件 课件 14 次下载
- 八年级下册数学人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形 课时2 菱形的判定 课件 课件 15 次下载
- 八年级下册数学人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形 课件 课件 16 次下载
初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形精品课件ppt
展开1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.(重点)2.能应用矩形的判定解决简单的证明题和计算题.(难点)
思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任意一种就可以解决问题,这是为什么呢?
这节课我们一起探讨矩形的判定吧.
知识点1 对角线相等的平行四边形是矩形
类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.
问题1 除了定义以外,判定矩形的方法还有没有呢?
矩形是特殊的平行四边形.
类似地,那我们研究矩形的性质的逆命题是否成立.
问题2 上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?
我猜想:对角线相等的平行四边形是矩形.
不对,等腰梯形的对角线也相等.
不对,矩形是特殊的平行四边形,所以它的对角线不仅相等且平分.
思考 你能证明这一猜想吗?
已知:如图,在□ABCD中,AC , DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB, ∴ △ABC≌△DCB , ∴∠ABC = ∠DCB. ∵AB∥CD, ∴∠ABC + ∠DCB = 180°, ∴ ∠ABC = 90°, ∴ □ ABCD是矩形(矩形的定义).
矩形的判定定理:对角线相等的平行四边形是矩形.
几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.
思考 数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你现在知道为什么了吗?
对角线相等的平行四边形是矩形.
解:∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又∵∠OAD=50°,
例2 如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.
∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等),
AO=BO=CO=DO(矩形的对角线互相平分),
∵ AE=BF=CG=DH,
∴OE=OF=OG=OH,
∴四边形EFGH是平行四边形,
∵EO+OG=FO+OH,
即EG=FH,∴四边形EFGH是矩形.
1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是 ( )
A.AC=BD B.AC=BCC.AD=BC D.AB=AD
知识点2 有三个角是直角的四边形是矩形
问题1 上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?
逆命题:四个角是直角的四边形是矩形.
问题2 至少有几个角是直角的四边形是矩形?
猜测:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.
证明:∵ ∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形,∴四边形ABCD是矩形.
矩形的判定定理:有三个角是直角的四边形是矩形.
几何语言描述:在四边形ABCD中,∵ ∠A=∠B=∠C=90°,∴四边形ABCD是矩形.
例3 如图, □ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形.
证明:在□ ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE与BG分别为∠DAB、∠ABC的平分线,
∴四边形EFGH是矩形.
同理可证∠AED=∠EHG=90°,
有一个角是直角的平行四边形是矩形.
有三个角是直角的四边形是矩形.
运用定理进行计算和证明
1.下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(5)有三个角是直角的四边形是矩形;
(6)四个角都相等的四边形是矩形;
(7)对角线相等,且有一个角是直角的四边形是矩形;
(4)有三个角都相等的四边形是矩形;
(8)一组对角互补的平行四边形是矩形.
2.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、 ∠MCA、 ∠ ACN、∠CAF的平分线,则四边形ABCD是 ( ) A.梯形 B.平行四边形 C.矩形 D.不能确定
3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.
证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°.又∵△ABC中,AB=5,BC=12,AC=13,满足132=52+122,即∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.
4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.
证明:∵四边形ABCD为平行四边形, ∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴四边形NDMB为平行四边形,MN=BD, ∴平行四边形NDMB为矩形.
初中数学人教版八年级下册18.2.1 矩形评课ppt课件: 这是一份初中数学人教版八年级下册18.2.1 矩形评课ppt课件,共20页。PPT课件主要包含了学习目标,矩形的判定定理1,矩形的判定定理2,基础巩固,ACBD,综合应用,矩形的判定定理等内容,欢迎下载使用。
初中数学人教版八年级下册18.2.1 矩形课文内容ppt课件: 这是一份初中数学人教版八年级下册18.2.1 矩形课文内容ppt课件,共19页。PPT课件主要包含了contents,分钟小测,精典范例,巩固提高,变式练习,课堂精讲,对角线互相垂直等内容,欢迎下载使用。
初中数学人教版八年级下册18.2.1 矩形作业ppt课件: 这是一份初中数学人教版八年级下册18.2.1 矩形作业ppt课件,共16页。