![21.2 解一元二次方程专题训练(一) 一元二次方程的解法及配方法的应用第1页](http://img-preview.51jiaoxi.com/2/3/5880845/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.2 解一元二次方程专题训练(一) 一元二次方程的解法及配方法的应用第2页](http://img-preview.51jiaoxi.com/2/3/5880845/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版九年级上册21.2.1 配方法优秀课后作业题
展开
这是一份人教版九年级上册21.2.1 配方法优秀课后作业题,共4页。试卷主要包含了一元二次方程的解法,配方法的应用等内容,欢迎下载使用。
专题训练(一) 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x-1)2=225; (2)(x-2)2=8; (3)9x2-6x+1=9; (4)3(2x+1)2-2=0. 2.用配方法解方程:(1)2t2-3t=-1; (2)2x2+5x-1=0; (3)(2x-1)(3x-1)=3-6x; (4)(2x-1)2=x(3x+2)-7. 3.用公式法解方程:(1)x2=6x+1; (2)0.2x2-0.1=0.4x; (3)x-2=2x2. 4.用因式分解法解方程:(1)(x-1)2-2(x-1)=0; (2)5x(x-3)=(x-3)(x+1); (3)(x+2)2-10(x+2)+25=0. 5.用适当的方法解方程:(1)2(x-3)2=x2-9; (2)(2x+1)(4x-2)=(2x-1)2+2; (3)(x+1)(x-1)+2(x+3)=8. 二、配方法的应用(一)最大(小)值6.利用配方法证明:无论x取何实数值,代数式-x2-x-1的值总是负数,并求出它的最大值. 7.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少? (二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值. 9.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b++25=0,请根据已知条件判断其形状. 专题训练(一) 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x-1)2=225;解:x1=4,x2=- (2)(x-2)2=8;解:x1=2+2,x2=2-2 (3)9x2-6x+1=9;解:x1=,x2=- (4)3(2x+1)2-2=0.解:x1=-+,x2=-- 2.用配方法解方程:(1)2t2-3t=-1;解:t1=,t2=1 (2)2x2+5x-1=0;解:x1=,x2= (3)(2x-1)(3x-1)=3-6x;解:x1=,x2=- (4)(2x-1)2=x(3x+2)-7.解:x1=4,x2=2 3.用公式法解方程:(1)x2=6x+1; 解:x1=3+,x2=3- (2)0.2x2-0.1=0.4x;解:x1=,x2= (3)x-2=2x2.解:原方程无实数根 4.用因式分解法解方程:(1)(x-1)2-2(x-1)=0;解:x1=3,x2=1 (2)5x(x-3)=(x-3)(x+1);解:x1=3,x2= (3)(x+2)2-10(x+2)+25=0.解:x1=x2=3 5.用适当的方法解方程:(1)2(x-3)2=x2-9;解:x1=3,x2=9 (2)(2x+1)(4x-2)=(2x-1)2+2;解:x1=,x2= (3)(x+1)(x-1)+2(x+3)=8.解:x1=1,x2=-3 二、配方法的应用(一)最大(小)值6.利用配方法证明:无论x取何实数值,代数式-x2-x-1的值总是负数,并求出它的最大值.解:-x2-x-1=-(x+)2-,∵-(x+)2≤0,∴-(x+)2-<0,故结论成立.当x=-时,-x2-x-1有最大值- 7.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5 (二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=12 9.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b++25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+=0,即(a-3)2+(b-4)2+=0,由非负性得(a-3)2=0,(b-4)2=0,=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形
相关试卷
这是一份初中21.2.1 配方法精品当堂达标检测题,共8页。试卷主要包含了用配方法解方程,解方程等内容,欢迎下载使用。
这是一份专题21.2 解一元二次方程-配方法(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共9页。试卷主要包含了用配方法解方程,解方程等内容,欢迎下载使用。
这是一份专题21.2 解一元二次方程(一)(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共12页。试卷主要包含了已知 2=4 ,求 x 的值,解方程,求式中 x 的值等内容,欢迎下载使用。