


还剩6页未读,
继续阅读
所属成套资源:【精品试题】高考数学一轮 必刷题 专题(含解析)共70套
成套系列资料,整套一键下载
【精品试题】高考数学一轮必刷题 专题06 函数的奇偶性与周期性(含解析)
展开
考点06 函数的奇偶性与周期性
1.下列函数为奇函数的是( )
A.f(x)= B.f(x)=ex
C.f(x)=cos x D.f(x)=ex-e-x
2.设函数f(x)=x+sin x(x∈R),则下列说法错误的是( )
A.f(x)是奇函数 B.f(x)在R上单调递增
C.f(x)的值域为R D.f(x)是周期函数
3.对于函数f(x)=asin x+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1),f(-1),所得出的正确结果可能是( )
A.2和1 B.2和0
C.2和-1 D.2和-2
4.已知函数f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )
A.- B.
C.- D.
5.已知y=f(x)是偶函数,且当0≤x≤1时,f(x)=sin x,而y=f(x+1)是奇函数,则a=f(-3.5),b=f(7),c=f(12)的大小关系是( )
A.c<b<a B.c<a<b
C.a<c<b D.a<b<c
6.已知函数f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)=( )
A.-2 B.2
C.-98 D.98
7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
8.设e是自然对数的底数,函数f(x)是周期为4的奇函数,且当0
A. B.
C. D.
9.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 019)+f(2 020)=( )
A.0 B.2
C.3 D.4
10.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为( )
A.-3 B.-2
C.2 D.3
11.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围是( )
A.(1,+∞) B.(2,+∞) C.(-∞,-1)∪(1,+∞) D.(-∞,-2)∪(2,+∞)
12.已知函数f(x)对任意x∈R,都有f(x+6)+f(x)=0,y=f(x-1)的图象关于点(1,0)对称,且f(2)=4,则f(2 014)=( )
A.0 B.-4
C.-8 D.-16
13.已知定义在R上的函数f(x)满足f(x-3)=-f(x),在区间上是增函数,且函数y=f(x-3)为奇函数,则( )
A.f(-31)<f(84)<f(13)
B.f(84)<f(13)<f(-31)
C.f(13)<f(84)<f(-31)
D.f(-31)<f(13)<f(84)
14.已知函数f(x)是定义在R上的周期为2的奇函数,且当0
15.定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为________.
16.若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则f(2a-b)=________.
17.已知函数f(x)在R上为奇函数,且x>0时, f(x)=+1,则当x<0时, f(x)=________.
18.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x.若f(2-a2)>f(a),则实数a的取值范围是________.
19.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
20.已知函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2, 且f(x)在(0,+∞)上是增函数,求x的取值范围.
21.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0),其中正确命题的序号是________(请把正确命题的序号全部写出来).
考点06 函数的奇偶性与周期性
1.下列函数为奇函数的是( )
A.f(x)= B.f(x)=ex
C.f(x)=cos x D.f(x)=ex-e-x
【答案】D
【解析】对于A,定义域不关于原点对称,故不是;对于B, f(-x)=e-x=≠-f(x),故不是;对于C,f(-x)=cos(-x)=cos x≠-f(x),故不是;对于D,f(-x)=e-x-ex=-(ex-e-x)=-f(x),是奇函数,故选D.
2.设函数f(x)=x+sin x(x∈R),则下列说法错误的是( )
A.f(x)是奇函数 B.f(x)在R上单调递增
C.f(x)的值域为R D.f(x)是周期函数
【答案】D
【解析】因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f ′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,故D错误.
3.对于函数f(x)=asin x+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1),f(-1),所得出的正确结果可能是( )
A.2和1 B.2和0
C.2和-1 D.2和-2
【答案】B
【解析】设g(x)=asin x+bx3+cx,显然g(x)为定义域上的奇函数,所以g(1)+g(-1)=0,所以f(1)+f(-1)=g(1)+g(-1)+2=2,只有B选项中两个值的和为2.
4.已知函数f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )
A.- B.
C.- D.
【答案】B
【解析】∵f(x)是偶函数,∴f(-x)=f(x),∴b=0.又a-1=-2a,∴a=,∴a+b=.故选B.
5.已知y=f(x)是偶函数,且当0≤x≤1时,f(x)=sin x,而y=f(x+1)是奇函数,则a=f(-3.5),b=f(7),c=f(12)的大小关系是( )
A.c<b<a B.c<a<b
C.a<c<b D.a<b<c
【答案】B
【解析】因为y=f(x)是偶函数,所以f(x)=f(-x),
因为y=f(x+1)是奇函数,所以f(x)=-f(2-x),
所以f(-x)=-f(2-x),即f(x)=f(x+4).
所以函数f(x)的周期为4,
又因为当0≤x≤1时,f(x)=sin x,所以函数在[0,1]上单调递增,
因为a=f(-3.5)=f(-3.5+4)=f(0.5);
b=f(7)=f(7-8)=f(-1)=f(1),
c=f(12)=f(12-12)=f(0),
又因为f(x)在[0,1]上为增函数,
所以f(0)<f(0.5)<f(1),即c<a<b.
6.已知函数f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)=( )
A.-2 B.2
C.-98 D.98
【答案】B
【解析】由f(x+4)=f(x)知,函数f(x)的周期为4,则f(2 019)=f(504×4+3)=f(3),
又f(3)=f(-1),且f(-1)=2,∴f(2 019)=2.
7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
【答案】C
【解析】∵f(x)是奇函数,∴当x<0时,-x>0,∴f(-x)=(-x)2-2x,∴-f(x)=x2-2x,∴f(x)=-x2+2x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.
8.设e是自然对数的底数,函数f(x)是周期为4的奇函数,且当0
A. B.
C. D.
【答案】D
【解析】因为函数以4为周期,所以f=f=f=-f=ln ,所以ef()=eln =.故选D.
9.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 019)+f(2 020)=( )
A.0 B.2
C.3 D.4
【答案】B
【解析】∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.
令x=-1,则f(-1+2)-f(-1)=2f(1),
即f(1)-f(1)=2f(1)=0,即f(1)=0.
则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),
即函数的周期是2,又f(0)=2,则f(2 019)+f(2 020)=f(1)+f(0)=0+2=2,故选B.
10.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为( )
A.-3 B.-2
C.2 D.3
【答案】C
【解析】依题意f(x)在(0,+∞)上单调递减,且在R上是奇函数,所以f(x)在(-∞,0)上单调递减,所以f(-2)=-f(2)=0,结合图象可知f(x)>0的解集为(-∞,-2)∪(0,2).故选C.
11.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围是( )
A.(1,+∞)
B.(2,+∞)
C.(-∞,-1)∪(1,+∞)
D.(-∞,-2)∪(2,+∞)
【答案】B
【解析】由题意,偶函数f(x)在[0,+∞)上是减函数,即不等式f(a)≥f(x)对任意x∈[1,2]恒成立,即不等式f(|a|)≥f(|x|)对任意x∈[1,2]恒成立,所以|a|≤|x|对任意x∈[1,2]恒成立,所以|a|≤1,则-1≤a≤1.故选B.
12.已知函数f(x)对任意x∈R,都有f(x+6)+f(x)=0,y=f(x-1)的图象关于点(1,0)对称,且f(2)=4,则f(2 014)=( )
A.0 B.-4
C.-8 D.-16
【答案】B
【解析】由题意可知,函数f(x)对任意x∈R,都有f(x+6)=-f(x),∴f(x+12)=f [(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4.故选B.
13.已知定义在R上的函数f(x)满足f(x-3)=-f(x),在区间上是增函数,且函数y=f(x-3)为奇函数,则( )
A.f(-31)<f(84)<f(13) B.f(84)<f(13)<f(-31)
C.f(13)<f(84)<f(-31) D.f(-31)<f(13)<f(84)
【答案】A.
【解析】根据题意,函数f(x)满足f(x-3)=-f(x),则有f(x-6)=-f(x-3)=f(x),则函数f(x)为周期为6的周期函数.若函数y=f(x-3)为奇函数,则f(x)的图象关于点(-3,0)成中心对称,则有f(x)=-f(-6-x),又由函数的周期为6,则有f(x)=-f(-x),函数f(x)为奇函数.又由函数在区间上是增函数,则函数f(x)在上为增函数,f(84)=f(14×6+0)=f(0),f(-31)=f(-1-5×6)=f(-1),f(13)=f(1+2×6)=f(1),则有f(-1)<f(0)<f(1),即f(-31)<f(84)<f(13),故选A.
14.已知函数f(x)是定义在R上的周期为2的奇函数,且当0
【答案】-3
【解析】∵函数f(x)是定义在R上的周期为2的奇函数,
∴f=f=f=-f.
又当0
又f(2)=f(0)=0,∴f+f(2)=-3.
15.定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为________.
【答案】-8
【解析】因为f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,由f(x-4)=-f(x)可得f(x+2)=-f(x+6)=-f(x-2),因为f(x)是奇函数,所以f(x+2)=-f(x-2)=f(2-x),所以f(x)的图象关于直线x=2对称,结合f(x)在[0,2]上为增函数,可得函数f(x)的大致图象如图,由图看出,四个交点中的左边两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=-8.
16.若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则f(2a-b)=________.
【答案】5
【解析】∵函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,∴-1-a+2a=0,即a=1.
∵f(x)=f(-x),
∴ax2+bx+1=ax2-bx+1,∴b=0,
即f(x)=x2+1.
则f(2a-b)=f(2)=5.
17.已知函数f(x)在R上为奇函数,且x>0时, f(x)=+1,则当x<0时, f(x)=________.
【答案】--1
【解析】∵f(x)为奇函数,且x>0时, f(x)=+1,∴当x<0时,即-x>0,有 f(x)=-f(-x)=-(+1),即x<0时, f(x)=-(+1)=--1.
18.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x.若f(2-a2)>f(a),则实数a的取值范围是________.
【答案】(-2,1)
【解析】∵f(x)是奇函数,∴当x<0时, f(x)=-x2+2x.做出函数f(x)的大致图象如图所示,结合图象可知f(x)是R上的增函数.由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.
19.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
【答案】
【解析】(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时, f(x)=x2+2x=x2+mx,所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象(如图所示)知
所以1<a≤3,
故实数a的取值范围是(1,3].
20.已知函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2, 且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答案】(1) 0 (2) f(x)为偶函数 (3) (-15,1)∪(1,17)
【解析】(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.
(2)f(x)为偶函数.
证明:令x1=x2=-1,有f(1)=f(-1)+f(-1),
∴f(-1)=f(1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x),∴f(x)为偶函数.
(3)依题意有f(4×4)=f(4)+f(4)=2,
又由(2)知, f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)
∵f(x)在(0,+∞)上是增函数,
∴0<|x-1|<16,解得-15
∴x的取值范围是(-15,1)∪(1,17).
21.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0),其中正确命题的序号是________(请把正确命题的序号全部写出来).
【答案】①②③④
【解析】f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
令x=y=0,
所以f(0)=0.令x+y=0,所以y=-x,
所以f(0)=f(x)+f(-x).
所以f(-x)=-f(x),所以f(x)为奇函数.
因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,所以f(x)在[0,1]上为增函数.
由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)=f(x),
所以周期T=4,
即f(x)为周期函数.
f(x+2)=-f(x)⇒f(-x+2)=-f(-x).
又因为f(x)为奇函数,所以f(2-x)=f(x),
所以函数关于x=1对称.
由f(x)在[0,1]上为增函数,又关于x=1对称,
所以f(x)在[1,2]上为减函数.
由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).
1.下列函数为奇函数的是( )
A.f(x)= B.f(x)=ex
C.f(x)=cos x D.f(x)=ex-e-x
2.设函数f(x)=x+sin x(x∈R),则下列说法错误的是( )
A.f(x)是奇函数 B.f(x)在R上单调递增
C.f(x)的值域为R D.f(x)是周期函数
3.对于函数f(x)=asin x+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1),f(-1),所得出的正确结果可能是( )
A.2和1 B.2和0
C.2和-1 D.2和-2
4.已知函数f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )
A.- B.
C.- D.
5.已知y=f(x)是偶函数,且当0≤x≤1时,f(x)=sin x,而y=f(x+1)是奇函数,则a=f(-3.5),b=f(7),c=f(12)的大小关系是( )
A.c<b<a B.c<a<b
C.a<c<b D.a<b<c
6.已知函数f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)=( )
A.-2 B.2
C.-98 D.98
7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
8.设e是自然对数的底数,函数f(x)是周期为4的奇函数,且当0
C. D.
9.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 019)+f(2 020)=( )
A.0 B.2
C.3 D.4
10.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为( )
A.-3 B.-2
C.2 D.3
11.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围是( )
A.(1,+∞) B.(2,+∞) C.(-∞,-1)∪(1,+∞) D.(-∞,-2)∪(2,+∞)
12.已知函数f(x)对任意x∈R,都有f(x+6)+f(x)=0,y=f(x-1)的图象关于点(1,0)对称,且f(2)=4,则f(2 014)=( )
A.0 B.-4
C.-8 D.-16
13.已知定义在R上的函数f(x)满足f(x-3)=-f(x),在区间上是增函数,且函数y=f(x-3)为奇函数,则( )
A.f(-31)<f(84)<f(13)
B.f(84)<f(13)<f(-31)
C.f(13)<f(84)<f(-31)
D.f(-31)<f(13)<f(84)
14.已知函数f(x)是定义在R上的周期为2的奇函数,且当0
16.若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则f(2a-b)=________.
17.已知函数f(x)在R上为奇函数,且x>0时, f(x)=+1,则当x<0时, f(x)=________.
18.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x.若f(2-a2)>f(a),则实数a的取值范围是________.
19.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
20.已知函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2, 且f(x)在(0,+∞)上是增函数,求x的取值范围.
21.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0),其中正确命题的序号是________(请把正确命题的序号全部写出来).
考点06 函数的奇偶性与周期性
1.下列函数为奇函数的是( )
A.f(x)= B.f(x)=ex
C.f(x)=cos x D.f(x)=ex-e-x
【答案】D
【解析】对于A,定义域不关于原点对称,故不是;对于B, f(-x)=e-x=≠-f(x),故不是;对于C,f(-x)=cos(-x)=cos x≠-f(x),故不是;对于D,f(-x)=e-x-ex=-(ex-e-x)=-f(x),是奇函数,故选D.
2.设函数f(x)=x+sin x(x∈R),则下列说法错误的是( )
A.f(x)是奇函数 B.f(x)在R上单调递增
C.f(x)的值域为R D.f(x)是周期函数
【答案】D
【解析】因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f ′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,故D错误.
3.对于函数f(x)=asin x+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1),f(-1),所得出的正确结果可能是( )
A.2和1 B.2和0
C.2和-1 D.2和-2
【答案】B
【解析】设g(x)=asin x+bx3+cx,显然g(x)为定义域上的奇函数,所以g(1)+g(-1)=0,所以f(1)+f(-1)=g(1)+g(-1)+2=2,只有B选项中两个值的和为2.
4.已知函数f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )
A.- B.
C.- D.
【答案】B
【解析】∵f(x)是偶函数,∴f(-x)=f(x),∴b=0.又a-1=-2a,∴a=,∴a+b=.故选B.
5.已知y=f(x)是偶函数,且当0≤x≤1时,f(x)=sin x,而y=f(x+1)是奇函数,则a=f(-3.5),b=f(7),c=f(12)的大小关系是( )
A.c<b<a B.c<a<b
C.a<c<b D.a<b<c
【答案】B
【解析】因为y=f(x)是偶函数,所以f(x)=f(-x),
因为y=f(x+1)是奇函数,所以f(x)=-f(2-x),
所以f(-x)=-f(2-x),即f(x)=f(x+4).
所以函数f(x)的周期为4,
又因为当0≤x≤1时,f(x)=sin x,所以函数在[0,1]上单调递增,
因为a=f(-3.5)=f(-3.5+4)=f(0.5);
b=f(7)=f(7-8)=f(-1)=f(1),
c=f(12)=f(12-12)=f(0),
又因为f(x)在[0,1]上为增函数,
所以f(0)<f(0.5)<f(1),即c<a<b.
6.已知函数f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)=( )
A.-2 B.2
C.-98 D.98
【答案】B
【解析】由f(x+4)=f(x)知,函数f(x)的周期为4,则f(2 019)=f(504×4+3)=f(3),
又f(3)=f(-1),且f(-1)=2,∴f(2 019)=2.
7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
【答案】C
【解析】∵f(x)是奇函数,∴当x<0时,-x>0,∴f(-x)=(-x)2-2x,∴-f(x)=x2-2x,∴f(x)=-x2+2x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.
8.设e是自然对数的底数,函数f(x)是周期为4的奇函数,且当0
C. D.
【答案】D
【解析】因为函数以4为周期,所以f=f=f=-f=ln ,所以ef()=eln =.故选D.
9.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 019)+f(2 020)=( )
A.0 B.2
C.3 D.4
【答案】B
【解析】∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.
令x=-1,则f(-1+2)-f(-1)=2f(1),
即f(1)-f(1)=2f(1)=0,即f(1)=0.
则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),
即函数的周期是2,又f(0)=2,则f(2 019)+f(2 020)=f(1)+f(0)=0+2=2,故选B.
10.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为( )
A.-3 B.-2
C.2 D.3
【答案】C
【解析】依题意f(x)在(0,+∞)上单调递减,且在R上是奇函数,所以f(x)在(-∞,0)上单调递减,所以f(-2)=-f(2)=0,结合图象可知f(x)>0的解集为(-∞,-2)∪(0,2).故选C.
11.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围是( )
A.(1,+∞)
B.(2,+∞)
C.(-∞,-1)∪(1,+∞)
D.(-∞,-2)∪(2,+∞)
【答案】B
【解析】由题意,偶函数f(x)在[0,+∞)上是减函数,即不等式f(a)≥f(x)对任意x∈[1,2]恒成立,即不等式f(|a|)≥f(|x|)对任意x∈[1,2]恒成立,所以|a|≤|x|对任意x∈[1,2]恒成立,所以|a|≤1,则-1≤a≤1.故选B.
12.已知函数f(x)对任意x∈R,都有f(x+6)+f(x)=0,y=f(x-1)的图象关于点(1,0)对称,且f(2)=4,则f(2 014)=( )
A.0 B.-4
C.-8 D.-16
【答案】B
【解析】由题意可知,函数f(x)对任意x∈R,都有f(x+6)=-f(x),∴f(x+12)=f [(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4.故选B.
13.已知定义在R上的函数f(x)满足f(x-3)=-f(x),在区间上是增函数,且函数y=f(x-3)为奇函数,则( )
A.f(-31)<f(84)<f(13) B.f(84)<f(13)<f(-31)
C.f(13)<f(84)<f(-31) D.f(-31)<f(13)<f(84)
【答案】A.
【解析】根据题意,函数f(x)满足f(x-3)=-f(x),则有f(x-6)=-f(x-3)=f(x),则函数f(x)为周期为6的周期函数.若函数y=f(x-3)为奇函数,则f(x)的图象关于点(-3,0)成中心对称,则有f(x)=-f(-6-x),又由函数的周期为6,则有f(x)=-f(-x),函数f(x)为奇函数.又由函数在区间上是增函数,则函数f(x)在上为增函数,f(84)=f(14×6+0)=f(0),f(-31)=f(-1-5×6)=f(-1),f(13)=f(1+2×6)=f(1),则有f(-1)<f(0)<f(1),即f(-31)<f(84)<f(13),故选A.
14.已知函数f(x)是定义在R上的周期为2的奇函数,且当0
【解析】∵函数f(x)是定义在R上的周期为2的奇函数,
∴f=f=f=-f.
又当0
15.定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为________.
【答案】-8
【解析】因为f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,由f(x-4)=-f(x)可得f(x+2)=-f(x+6)=-f(x-2),因为f(x)是奇函数,所以f(x+2)=-f(x-2)=f(2-x),所以f(x)的图象关于直线x=2对称,结合f(x)在[0,2]上为增函数,可得函数f(x)的大致图象如图,由图看出,四个交点中的左边两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=-8.
16.若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则f(2a-b)=________.
【答案】5
【解析】∵函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,∴-1-a+2a=0,即a=1.
∵f(x)=f(-x),
∴ax2+bx+1=ax2-bx+1,∴b=0,
即f(x)=x2+1.
则f(2a-b)=f(2)=5.
17.已知函数f(x)在R上为奇函数,且x>0时, f(x)=+1,则当x<0时, f(x)=________.
【答案】--1
【解析】∵f(x)为奇函数,且x>0时, f(x)=+1,∴当x<0时,即-x>0,有 f(x)=-f(-x)=-(+1),即x<0时, f(x)=-(+1)=--1.
18.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x.若f(2-a2)>f(a),则实数a的取值范围是________.
【答案】(-2,1)
【解析】∵f(x)是奇函数,∴当x<0时, f(x)=-x2+2x.做出函数f(x)的大致图象如图所示,结合图象可知f(x)是R上的增函数.由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.
19.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
【答案】
【解析】(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时, f(x)=x2+2x=x2+mx,所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象(如图所示)知
所以1<a≤3,
故实数a的取值范围是(1,3].
20.已知函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2, 且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答案】(1) 0 (2) f(x)为偶函数 (3) (-15,1)∪(1,17)
【解析】(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.
(2)f(x)为偶函数.
证明:令x1=x2=-1,有f(1)=f(-1)+f(-1),
∴f(-1)=f(1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x),∴f(x)为偶函数.
(3)依题意有f(4×4)=f(4)+f(4)=2,
又由(2)知, f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)
∴0<|x-1|<16,解得-15
21.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0),其中正确命题的序号是________(请把正确命题的序号全部写出来).
【答案】①②③④
【解析】f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
令x=y=0,
所以f(0)=0.令x+y=0,所以y=-x,
所以f(0)=f(x)+f(-x).
所以f(-x)=-f(x),所以f(x)为奇函数.
因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,所以f(x)在[0,1]上为增函数.
由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)=f(x),
所以周期T=4,
即f(x)为周期函数.
f(x+2)=-f(x)⇒f(-x+2)=-f(-x).
又因为f(x)为奇函数,所以f(2-x)=f(x),
所以函数关于x=1对称.
由f(x)在[0,1]上为增函数,又关于x=1对称,
所以f(x)在[1,2]上为减函数.
由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).
相关资料
更多