初中数学人教版七年级上册第三章 一元一次方程综合与测试精品课时练习
展开1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.
(1)求购买A和B两种记录本的数量;
(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?
2.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.
(1)求这批校服共有多少件?
(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?
3.某商店在一天内以每件60元的价格卖出A、B两种型号衣服,其中A型号20件,B型号25件,A型号衣服每件盈利25%,B型号衣服每件亏损20%,商店这一天卖这两种衣服总的是盈利还是亏损,或是不盈不亏?若盈利,则盈利多少?若亏损,则亏了多少?
4.为了资源再利用,学校计划对库存的桌椅进行维修,现有甲、乙两个木工组,甲组每天修桌椅10套,乙组每天比甲组多修5套,甲组单独修完这些桌椅比乙组单独修完多用5天.甲组每天维修费200元,乙组每天维修费300元.
(1)请问学校库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天80元生活补助费,现有三种修理方案:
①由甲组单独修理;
②由乙组单独修理;
⑧甲、乙合作同时修理;
你认为哪种方案最划算,请说明理由?
5.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,当点P运动到AB中点时,它所表示的数是 ;
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?
(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:
①当点P运动多少秒时,点P追上点Q?
②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.
6.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:
(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)
已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.
(1)求a、b的值;
(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?
(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)
7.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?
8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.
(1)求经过多少秒摩托车追上自行车?
(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?
9.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?
10.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.
(1)A,B两点之间的距离为 .
(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是
(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?
11.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.
(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?
(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?
12.如图,数轴上A、B、C三点表示的数分别为a、b、c,其中AC=2BC,a、b满足|a+6|+(b﹣12)2=0.
(1)则a= ,b= ,c= .
(2)动点P从A点出发,以每秒2个单位的速度沿数轴向右运动,到达B点后立即以每秒3个单位的速度沿数轴返回到A点,设动点P的运动时间为t秒.
①P点从A点向B点运动过程中表示的数 (用含t的代数式表示).
②求t为何值时,点P到A、B、C三点的距离之和为18个单位?
13.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.
(1)数表中从小到大排列的第9个数是17,第40个数是 ,第100个数是 ,第n个数是 .
(2)数71排在数表的第 行,从左往右的第 个数.
(3)设T字框内处于中间且靠上方的数是整个数表中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和.
(4)若将T字框上下左右移动,框住的四个数的和能等于406吗?如能,求出这四个数,如不能,说明理由.
参考答案
1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,
依题意,得:3(2x+20)+2x=460,
解得:x=50,
∴2x+20=120.
答:购买A种记录本120本,B种记录本50本.
(2)460﹣3×120×0.8﹣2×50×0.9=82(元).
答:学校此次可以节省82元钱.
2.解:(1)设这批校服共有x件,
依题意,得:﹣=20,
解得:x=960.
答:这批校服共有960件.
(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,
依题意,得:16y+24y+24×(1+25%)(y+4)=960,
解得:y=12,
∴2y+4=28.
答:乙工厂加工28天.
3.解:设A型号衣服的进价为x元,B型号衣服的进价为y元,
依题意,得:60﹣x=25%x,60﹣y=﹣20%y,
解得:x=48,y=75,
∴20×(60﹣48)+25×(60﹣75)=﹣135(元).
答:商店这一天卖这两种衣服总的是亏损,亏了135元钱.
4.解:(1)设学校库存x套桌椅,
依题意,得:﹣=5,
解得:x=150.
答:学校库存150套桌椅.
(2)方案①所需费用为(200+80)×=4200(元);
方案②所需费用为(300+80)×=3800(元);
方案③所需费用为(200+300+80)×=3480(元).
∵4200>3800>3480,
∴选择方案③最划算.
5.解:(1)∵数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,
∴数轴上点B表示的数是6﹣11=﹣5,
∵点P运动到AB中点,
∴点P对应的数是:×(﹣5+6)=0.5,
故答案为:﹣5,0.5;
(2)设点P与Q运动t秒时重合,点P对应的数为:6﹣3t,点Q对应的数为:﹣5+2t,
∴6﹣3t=﹣5+2t,
解得:t=2.2,
∴点P与Q运动2.2秒时重合;
(3)①运动t秒时,点P对应的数为:6﹣3t,点Q对应的数为:﹣5﹣2t,
∵点P追上点Q,
∴6﹣3t=﹣5﹣2t,
解得:t=11,
∴当点P运动11秒时,点P追上点Q;
②∵点P与点Q之间的距离为8个单位长度,
∴|6﹣3t﹣(﹣5﹣2t)|=8,
解得:t=3或t=19,
当t=3时,点P对应的数为:6﹣3t=6﹣9=﹣3,
当t=19时,点P对应的数为:6﹣3t=6﹣57=﹣51,
∴当点P与点Q之间的距离为8个单位长度时,此时点P在数轴上所表示的数为﹣3或﹣51.
6.解:(1)由题意得:
解①,得a=1.8,
将a=1.8代入②,解得b=2.8
∴a=1.8,b=2.8.
(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9
设小王家这个月用水x吨,由题意得:
2.7×17+3.7×13+(x﹣30)×6.9=156.1
解得:x=39
∴小王家这个月用水39吨.
(3)设小王家11月份用水y吨,
当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30
解得y=11
当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30
解得y=9.125(舍去)
∴小王家11月份用水11吨.
7.解:(1)设第一次购进乙种商品x件,则购进甲种商品2x件,
根据题意得:20×2x+30x=7000,
解得:x=100,
∴2x=200件,
答:该超市第一次购进甲种商品200件,乙种商品100件.
(2)(25﹣20)×200+(40﹣30)×100=2000(元)
答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元.
(3)方法一:
设第二次乙种商品是按原价打y折销售
根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,
解得:y=9
答:第二次乙商品是按原价打9折销售.
方法二:
设第二次乙种商品每件售价为y元,
根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,
解得:y=36
×100%=90%
答:第二次乙商品是按原价打9折销售.
方法三:
2000+800﹣100×3=1800元
∴=6,
∴×100%=90%,
答:第二次乙商品是按原价打9折销售.
8.解:(1)设经过x秒摩托车追上自行车,
20x=5x+1200,
解得x=80.
答:经过80秒摩托车追上自行车.
(2)设经过y秒两人相距150米,
第一种情况:摩托车还差150米追上自行车时,
20y﹣1200=5y﹣150
解得y=70.
第二种情况:摩托车超过自行车150米时,
20y=150+5y+1200
解得y=90.
答:经过70秒或90秒两人在行进路线上相距150米.
9.解:设这些学生共有x人,
根据题意得,
解得x=48.
答:这些学生共有48人.
10.解:(1)4﹣(﹣9)=13.
故答案为:13.
(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,
依题意,得:x﹣(﹣9)=4﹣x+1,
解得:x=﹣2.
故答案为:﹣2.
(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.
∵AB=4,
∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,
解得:t=9或t=17.
答:经过9秒或17秒时,A.B两点相距4个单位长度.
11.解:(1)设运动时间为x秒时,MN=56.
依题意,得:(6x+11)﹣(﹣2x﹣5)=56,
解得:x=5.
答:运动时间为5秒时,MN=56.
(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,
∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.
∵AC+BD=3CD,
∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),
解得:t=4或t=2.
答:运动时间为2秒或4秒时,AC+BD=3CD.
12.解:(1)∵|a+6|+(b﹣12)2=0,
∴a+6=0,b﹣12=0,
∴a=﹣6,b=12.
∵AC=2BC,
∴c﹣(﹣6)=2×(12﹣c),
∴c=6.
故答案为:﹣6;12;6.
(2)①AB=12﹣(﹣6)=18,18÷2=9(秒),18÷3=6(秒),9+6=15(秒).
当0≤t≤9时,点P表示的数为2t﹣6;
当9<t≤15时,点P表示的数为12﹣3(t﹣9)=39﹣3t.
故答案为:.
②(方法一)当0≤t≤9时,PA=|2t﹣6﹣(﹣6)|=2t,PB=|2t﹣6﹣12|=18﹣2t,PC=|2t﹣6﹣6|=|2t﹣12|,
∵PA+PB+PC=18,
∴2t+18﹣2t+|2t﹣12|=18,
解得:t=6;
当9<t≤15时,PA=|39﹣3t﹣(﹣6)|=45﹣3t,PB=|39﹣3t﹣12|=3t﹣27,PC=|39﹣3t﹣6|=|33﹣3t|,
∵PA+PB+PC=18,
∴45﹣3t+3t﹣27+|33﹣3t|=18,
解得:t=11.
答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.
(方法二)∵PA+PB=18,PA+PB+PC=18,
∴PC=0,即点P与点C重合.
[6﹣(﹣6)]÷2=6(秒),9+(12﹣6)÷3=11(秒).
答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.
13.解:(1)∵连续的奇数1、3、5、7、…、,
∴第40个数是40×2﹣1=79,第100个数是100×2﹣1=199,第n个数是2n﹣1;
故答案为:79,199,2n﹣1;
(2)∵2n﹣1=71,
∴n=36,
∴数71在第36个数,
∵每排有5个数,
∴数71排在数表的第8行,从左往右的第1个数,
故答案为:8,1;
(3)由题意,设T字框内处于中间且靠上方的数为2n﹣1,
则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,
∴T字框内四个数的和为:
2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.
故T字框内四个数的和为:8n+6.
(4)由题意,令框住的四个数的和为406,则有:
8n+6=406,解得n=50.
由于数2n﹣1=99,排在数表的第10行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.
故框住的四个数的和不能等于406.自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
17吨及以下
a
0.90
超过17吨但不超过30吨的部分
b
0.90
超过30吨的部分
6.00
0.90
甲
乙
进价(元/件)
20
30
售价(元/件)
25
40
2020年秋北师大版数学七年级上册期末提高专练:数轴类应用题综合(一): 这是一份北师大版七年级上册本册综合课时训练,共10页。试卷主要包含了已知,如图,已知在纸面上有一条数轴,操作探究等内容,欢迎下载使用。
七年级上册第一章 有理数1.2 有理数1.2.2 数轴综合训练题: 这是一份七年级上册第一章 有理数1.2 有理数1.2.2 数轴综合训练题,共23页。试卷主要包含了阅读理解,AC=18等内容,欢迎下载使用。
初中数学人教版七年级上册3.1.1 一元一次方程练习: 这是一份初中数学人教版七年级上册3.1.1 一元一次方程练习,共22页。试卷主要包含了追击问题,相遇问题,8折;,4,,5)=1200,5.等内容,欢迎下载使用。