


初中数学第二十一章 一元二次方程21.3 实际问题与一元二次方程教案
展开(四)销售问题
售价—进价=利润=进价×利润率 一件商品的利润×销售量=总利润 单价×销售量=销售额
总销售额—总成本=总利润
例1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价(元)满足关系:P=100-,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
例2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产只熊猫的成本为R(元),售价每只为P(元),且R、P与的关系式分别为R=500+30,P=。
当日产量为多少时每日获得的利润为1750元?
若可获得的最大利润为1950元,问日产量应为多少?
例3. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
(五)动态几何问题:
例1、已知:如图3-9-3所示,在△中,,点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.
(1)如果分别从同时出发,那么几秒后,△的面积等于4cm2?
(2)如果分别从同时出发,那么几秒后,的长度等于5cm?
(3)在(1)中,△的面积能否等于7cm2?说明理由.
(六)数字问题
数值与数字的关系:例如2013=
例1.有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
2.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之积的3倍刚好等于这个两位数。求这个两位数。
(七)行程问题(选讲)
路程=速度×时间 相遇路程=速度和×时间 追击路程=速度差×时间
例1.甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.
例2、(1)甲、乙两人同时从A地出发,步行18千米到B地,甲每小时比乙多走1千米,结果比乙早到36分钟,求甲、乙两人的速度.
(2)A、B两地相距18千米,甲、乙两人都从A地往B地,乙步行两小时后,甲骑自行车出发,结果甲比乙提前6分钟到达乙地,若甲速比乙速的3倍还多2千米,求乙的速度.
(3)A、B两地相距18千米,甲、乙分别从A、B两地同时出发,相遇后甲再经过2.5小时到达B地,乙再经过1小时36分到达A地,求甲、乙两人的速度.
经典练习:
1.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?
2.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
3、某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量(件)与销售单价(元/件)符合一次函数,且时,;时,;(1)写出销售单价的取值范围;(2)求出一次函数的解析式;
(3)若该商场获得利润为元,试写出利润与销售单价之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
4.有一个两位数,它十位上的数字与个位上的数字的和是8。如把十位上的数字和个位上的数字调换后,所得的两位数乘以原来的两位数,就得到1855。求原来的两位数。
5. 甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?
6.甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。
拓展提高:
1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。当每吨售价为260元时,月销售量为45吨。该经销店为提高经营利润,准备采取降价的方式进行促销。经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;
(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
(3)小静说:“当月利润最大时,月销售额也最大。”你认为对吗?请说明理由。
巩固练习:
1.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速吗?
3.某河的水流速度为2千米/时,A、B两地相距36千米,一动力橡皮船从A地出发,逆流而上去B地,出航后1小时,机器发生故障,橡皮船随水向下漂流,30分钟后机器修复,继续向B地开去,但船速比修复前每小时慢了1千米,到达B地比预定时间迟54分钟,求橡皮船在静水中的速度?
4.《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为,为确保行车安全,一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时).以下是张师傅和李师傅行驶完全程为400千米的高速公路的对话片段.张:“你的车速太快了,平均每小时比我多跑20千米,比我少一个小时就跑完了全程,应该慢点啊!”李:“虽然我的时速快,但是最大的时速不超过我平均时速的10%,可没有超速违法啊!”李师傅超速违法吗?为什么?
初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系教案: 这是一份初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系教案,共6页。教案主要包含了三角形的内切圆,圆与圆的位置关系及判定,正多边形和圆等内容,欢迎下载使用。
初中数学24.1.2 垂直于弦的直径教案: 这是一份初中数学24.1.2 垂直于弦的直径教案,共7页。
初中人教版第二十三章 旋转综合与测试教案设计: 这是一份初中人教版第二十三章 旋转综合与测试教案设计,共7页。教案主要包含了旋转变换,中心对称,中心对称图形,关于原点对称的点的坐标等内容,欢迎下载使用。