|教案下载
终身会员
搜索
    上传资料 赚现金
    2020年高考数学理科一轮复习讲义:第5章数列第4讲
    立即下载
    加入资料篮
    2020年高考数学理科一轮复习讲义:第5章数列第4讲01
    2020年高考数学理科一轮复习讲义:第5章数列第4讲02
    2020年高考数学理科一轮复习讲义:第5章数列第4讲03
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年高考数学理科一轮复习讲义:第5章数列第4讲

    展开

    4讲 数列求和

    [考纲解读] 1.熟练掌握等差、等比数列的前n项和公式.(重点)

    2.熟练掌握另外几种非等差、等比数列求和的常见方法.(难点)

    [考向预测] 从近三年高考情况来看,本讲一直是高考中的热点,主要考查错位相减”“裂项相消”“等差、等比数列的公式求和等.预测2020年高考会考查数列求和或数列求和与不等式的综合.此类问题一般以解答题为主,以中档题型为主.

     

    1.基本数列求和公式法

    (1)等差数列求和公式:

    Snna1d.

    (2)等比数列求和公式:

    Sn

    2非基本数列求和常用方法

    (1)倒序相加法;(2)分组求和法;(3)并项求和法;(4)错位相减法;(5)裂项相消法.

    常见的裂项公式:

    ()

    3常用求和公式

    (1)1234n

    (2)1357(2n1)n2

    (3)122232n2

    (4)132333n32.

    1概念辨析

    (1)已知等差数列{an}的公差为d,则有.(  )

    (2)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin2sin2sin2sin288°sin289°44.5.(  )

    (3)Sna2a23a3nan时只要把上式等号两边同时乘以a即可根据错位相减法求得.(  )

    (4)若数列a1a2a1anan1(n>1nN*)首项为1,公比为3的等比数列,则数列{an}的通项公式是an.(  )

    答案 (1)× (2) (3)× (4)

    2小题热身

    (1)数列{an}的前n项和为Sn,若an,则S5等于(  )

    A1  B.  C.  D.

    答案 B

    解析 anS5a1a2a51.

    (2)数列1357(2n1)的前n项和Sn的值等于(  )

    An21   B2n2n1

    Cn21   Dn2n1

    答案 A

    解析 该数列的通项公式为an(2n1)

    Sn[135(2n1)]

    n21.

    (3)数列{an}的通项公式为an(1)n1·(4n3),则它的前100项之和S100等于(  )

    A200  B.-200  C400  D.-400

    答案 B

    解析 bn4n3,则{bn}是公差为4的等差数列,

    an(1)n1bn.

    S100(a1a2)(a3a4)(a99a100)

    (b1b2)(b3b4)(b99b100)

    =-4444=-4×50=-200.

    (4)数列{an}的通项公式为anncos,其前n项和为Sn,则S2018等于(  )

    A.-1010  B2018  C505  D1010

    答案 A

    解析 易知a1cos0a22cosπ=-2a30a44.

    所以数列{an}的所有奇数项为0,前2016项中所有偶数项(1008)依次为-2,4,-6,8,-2014,2016.S20160(24)(68)(20142016)1008.a20170a20182018×cos=-2018S2018S2016a201810082018=-1010.故选A.

     

    题型  分组转化法求和

                        

    1(2018·信阳模拟)已知数列{an}中,a1a21an2则数列{an}的前20项和为(  )

    A1121  B1122  C1123  D1124

    答案 C

    解析 由题意知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n1}是首项为1,公差为2的等差数列,故数列{an}的前20项和为10×1×21123.

    2(2018·合肥质检)已知数列{an}的前n项和SnnN*.

    (1)求数列{an}的通项公式;

    (2)bn2an(1)nan,求数列{bn}的前2n项和.

    解 (1)n1时,a1S11

    n2时,anSnSn1n.

    a1也满足ann

    故数列{an}的通项公式为ann.

    (2)(1)ann,故bn2n(1)nn.

    记数列{bn}的前2n项和为T2n

    T2n(212222n)(12342n)

    A212222nB=-12342n

    A22n12

    B(12)(34)[(2n1)2n]n.

    故数列{bn}的前2n项和T2nAB22n1n2.

    结论探究 在举例说明2条件下,求数列{bn}的前n项和Tn.

    解 由举例说明2bn2n(1)nn.

    n为偶数时,

    Tn(21222n)[1234(n1)n]2n12

    n为奇数时,Tn(21222n)[1234(n2)(n1)n]2n12n2n1.

    Tn

    分组转化法求和的常见类型

    (1)anbn±cn,且{bn}{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.

    (2)通项公式为an的数列,其中数列{bn}{cn}是等比数列或等差数列,可采用分组求和法求和.如举例说明1.                    

     

    已知数列{an}是等差数列,满足a12a48,数列{bn}是等比数列,满足b24b532.

    (1)求数列{an}{bn}的通项公式;

    (2)求数列{anbn}的前n项和Sn.

    解 (1)设等差数列{an}的公差为d

    由题意得d2

    所以ana1(n1)·d2(n1)×22n.

    设等比数列{bn}的公比为q,由题意得q38,解得q2.

    因为b12,所以bnb1·qn12×2n12n.

    (2)Snn2n2n12.

    题型  裂项相消法求和

    1.已知数列{an}的通项公式为an,若前n项和为10,则项数n________

    答案 120

    解析 因为an

    所以Sn(1)()()

    1,又因为Sn10

    所以110,解得n120.

    2(2018·芜湖模拟)已知数列{an}的前n项和为SnSnn2n2.

    (1)求数列{an}的通项公式;

    (2)bn,求数列{bn}的前n项和Tn.

    解 (1)Snn2n2

    n2时,Sn1(n1)2(n1)2

    an2n,当n1时,a14an(nN*)

    (2)由题意,bn

    n1时,T1.

    n2时,

    Tn

    .

    Tn

    条件探究 举例说明2中,若an2nbn

    ,求数列{bn}的前n项和Tn.

    解 bn

    Tn.

    几种常见的裂项相消及解题策略

    (1)常见的裂项方法(其中n为正整数)

    (2)利用裂项相消法求和时,应注意抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使前后相等.                    

     

    1Sn为等差数列{an}的前n项和,a44S515,若数列的前m项和为,则m(  )

    A8  B9  C10  D11

    答案 C

    解析 Sn为等差数列{an}的前n项和,设公差为da44S515,则解得d1

    an4(n4)n.

    由于

    Sm1

    1,解得m10.

    2.已知数列{an}是递增的等比数列,且a1a49a2a38.

    (1)求数列{an}的通项公式;

    (2)Sn为数列{an}的前n项和,bn,求数列{bn}的前n项和Tn.

    解 (1)因为数列{an}是递增的等比数列,

    a1a49a2a38.

    所以q38q2ana1·qn12n1.

    (2)(1)可知Sn2n1

    所以bn

    所以Tn1

    1.

    题型  错位相减法求和

    (2018·安徽皖江最后一卷){an}是等差数列,{bn}是各项都为正数的等比数列,且a1b11a3b521a5b313.

    (1)求数列{an}{bn}的通项公式;

    (2)求数列的前n项和Sn.

    解 (1){an}的公差为d{bn}的公比为q,则依题意有q>0

    解得d2q2.所以an1(n1)d2n1bnqn12n1.

    (2).

    Sn1

    2Sn23

    Sn2222×22×6.

    利用错位相减法的一般类型及思路

    (1)适用的数列类型:{anbn},其中数列{an}是公差为d的等差数列,{bn}是公比为q1的等比数列.

    (2)思路:设Sna1b1a2b2anbn(*)

    qSna1b2a2b3an1bnanbn1(**)

    (*)(**)得:(1q)Sna1b1d(b2b3bn)anbn1,就转化为根据公式可求的和.如举例说明.

    提醒:用错位相减法求和时容易出现以下两点错误:

    (1)两式相减时最后一项因为没有对应项而忘记变号.

    (2)对相减后的和式的结构认识模糊,错把中间的n1项和当作n项和.                    

     

    (2018·兰州模拟)已知数列{an}是首项为正数的等差数列,数列的前n项和为.

    (1)求数列{an}的通项公式;

    (2)bn(an1)·2an,求数列{bn}的前n项和Tn.

    解 (1)设数列{an}的公差为d

    n1,得,所以a1a23.

    n2,得

    所以a2a315.

    ①②解得a11d2

    所以an2n1.经检验,符合题意.

    (2)(1)bn2n·22n1n·4n

    所以Tn1·412·42n·4n

    所以4Tn1·422·43n·4n1

    两式相减,得

    3Tn41424nn·4n1n·4n1

    ×4n1.

    所以Tn×4n1.

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020年高考数学理科一轮复习讲义:第5章数列第4讲
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map