高中数学人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)公开课第1课时教案
展开第1课时 函数y=Asin(ωx+φ)的图象(一)
1.会用“五点法”画函数y=Asin(ωx+φ)的图象.
2.理解y=Asin(ωx+φ)中ω、φ、A对图象的影响.
3.掌握y=sinx与y=Asin(ωx+φ)图象间的变换关系,并能正确地指出其变换步骤.
参数A、ω、φ对函数y=Asin(ωx+φ)的图象的影响
(1)φ对函数y=sin(x+φ),x∈R的图象的影响
(2)ω(ω>0且ω≠1)对y=sin(ωx+φ)的图象的影响
(3)A(A>0且A≠1)对y=Asin(ωx+φ)的图象的影响
温馨提示:A,ω,φ对函数y=Asin(ωx+φ)的图象的影响
(1)A越大,函数图象的最大值越大,最大值与A是正比例关系.
(2)ω越大,函数图象的周期越小,ω越小,周期越大,周期与ω为反比例关系.
(3)φ大于0时,函数图象向左平移,φ小于0时,函数图象向右平移,即“左加右减”.
判断正误(正确的打“√”,错误的打“×”)
(1)由函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3)))的图象得到y=sinx的图象,必须向左平移.( )
(2)把函数y=sinx的图象上点的横坐标伸长到原来的3倍就得到函数y=sin3x的图象.( )
(3)将函数y=sinx图象上各点的纵坐标变为原来的A(A>0)倍,便得到函数y=Asinx的图象.( )
[答案] (1)× (2)× (3)√
题型一 用“五点法”作函数y=Asin(ωx+φ)的图象
【典例1】 用“五点法”作出函数y=eq \f(3,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,3)))的简图.
[思路导引] 先列表,再描点,最后连线.
[解] 函数y=eq \f(3,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,3)))的周期T=eq \f(2π,\f(1,3))=6π,先用“五点法”作它在长度为一个周期上的图象.列表如下:
描点、连线,如图所示,
利用该函数的周期性,把它在一个周期上的图象分别向左、右扩展,从而得到函数y=eq \f(3,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,3)))的简图(图略).
“五点法”作函数y=Asin(ωx+φ)(x∈R)的图象的步骤
(1)列表.令ωx+φ=0,eq \f(π,2),π,eq \f(3π,2),2π,依次得出相应的(x,y)值.
(2)描点.
(3)连线得函数在一个周期内的图象.
(4)左右平移得到y=Asin(ωx+φ),x∈R的图象.
[针对训练]
1.已知f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,3))).
(1)在给定的坐标系内,用“五点法”作出函数f(x)在一个周期内的图象;
(2)写出f(x)的单调递增区间;
(3)求f(x)的最大值和此时相应的x的值.
[解] (1)列表:
作图:
(2)由2kπ-eq \f(π,2)≤eq \f(x,2)+eq \f(π,3)≤2kπ+eq \f(π,2),
得4kπ-eq \f(5π,3)≤x≤4kπ+eq \f(π,3),k∈Z.
所以函数f(x)的单调递增区间为eq \b\lc\[\rc\](\a\vs4\al\c1(4kπ-\f(5π,3),4kπ+\f(π,3))),k∈Z.
(3)当eq \f(x,2)+eq \f(π,3)=eq \f(π,2)+2kπ,
即x=eq \f(π,3)+4kπ(k∈Z)时,f(x)max=2.
题型二 函数图象的平移变换
【典例2】 要得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x-\f(π,3)))的图象,只需将函数y=sin4x的图象( )
A.向左平移eq \f(π,12)个单位 B.向右平移eq \f(π,12)个单位
C.向左平移eq \f(π,3)个单位 D.向右平移eq \f(π,3)个单位
[思路导引] 注意平移变换是就“x”而言.
[解析] 由y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x-\f(π,3)))=sin4eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,12)))得,只需将y=sin4x的图象向右平移eq \f(π,12)个单位即可,故选B.
[答案] B
平移变换的策略
(1)先确定平移方向和平移的量.
(2)当x的系数是1时,若φ>0,则左移φ个单位;若φ<0,则右移|φ|个单位.
当x的系数是ω(ω>0)时,若φ>0,则左移eq \f(φ,ω)个单位;若φ<0,则右移eq \f(|φ|,ω)个单位.
[针对训练]
2.将函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))向左平移eq \f(π,6)个单位,可得到函数图象是( )
A.y=sin2x B.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))
C.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6))) D.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))
[解析] 将函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))向左平移eq \f(π,6)个单位,得y=sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))-\f(π,6)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6))),故选C.
[答案] C
题型三 函数图象的伸缩变换
【典例3】 已知函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))+eq \f(5,4),该函数的图象可由y=sinx,x∈R的图象经过怎样的变换得到?
[思路导引] 由y=sinx的图象通过变换得y=Asin(ωx+φ)的图象有两种途径:一是先伸缩后平移,二是先平移后伸缩.
[解] 解法一:步骤:①把函数y=sinx的图象向左平移eq \f(π,6)个单位长度,可以得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))的图象;
②把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))的图象上各点的横坐标缩短到原来的eq \f(1,2),纵坐标不变,可以得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象;
③把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象上各点的纵坐标缩短到原来的eq \f(1,2),横坐标不变,可以得到函数y=eq \f(1,2)sin(2x+eq \f(π,6))的图象;
④再把得到的函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象向上平移eq \f(5,4)个单位长度,就能得到函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))+eq \f(5,4)的图象.
解法二:步骤:①把函数y=sinx的图象上各点的横坐标缩短到原来的eq \f(1,2),而纵坐标不变,得到函数y=sin2x的图象;
②把函数y=sin2x的图象向左平移eq \f(π,12)个单位长度,可以得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象;
③把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象上各点的纵坐标缩短到原来的eq \f(1,2),而横坐标不变,可以得到函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象;
④再把得到的函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象向上平移eq \f(5,4)个单位长度,就能得到函数y=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))+eq \f(5,4)的图象.
由函数y=sinx的图象通过变换得到函数y=Asin(ωx+φ)的图象的步骤
[针对训练]
3.把函数y=sinx(x∈R)的图象上所有的点向左平行移动eq \f(π,3)个单位长度,再把所得图象上所有点的横坐标缩短到原来的eq \f(1,2)倍(纵坐标不变),得到的图象所表示的函数是( )
A.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3))),x∈R
B.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,6))),x∈R
C.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3))),x∈R
D.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(2π,3))),x∈R
[解析] 把函数y=sinx的图象上所有的点向左平行移动eq \f(π,3)个单位长度后得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3)))的图象,再把所得图象上所有的点的横坐标缩短到原来的eq \f(1,2)倍,得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))的图象.
[答案] C
4.把函数y=sin(ωx+φ)(ω>0,|φ|<π)的图象向左平移eq \f(π,6)个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得图象的函数解析式为y=sinx,则( )
A.ω=2,φ=eq \f(π,6) B.ω=2,φ=-eq \f(π,3)
C.ω=eq \f(1,2),φ=eq \f(π,6) D.ω=eq \f(1,2),φ=-eq \f(π,3)
[解析] 将函数y=sinx图象上所有点的横坐标缩短为原来的eq \f(1,2)(纵坐标不变),得解析式为y=sin2x的图象,再向右平移eq \f(π,6)个单位长度,得解析式为y=sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象,所以ω=2,φ=-eq \f(π,3).故选B.
[答案] B
课堂归纳小结
1.由y=sinx的图象,通过变换可得到函数y=Asin(ωx+φ)(A>0,ω>0)的图象,其变化途径有两条:
(1)y=sinxeq \(――――――→,\s\up17(相位变换))y=sin(x+φ)eq \(―――――→,\s\up17(周期变换))
y=sin(ωx+φ)eq \(――――――→,\s\up17(振幅变换))y=Asin(ωx+φ).
(2)y=sinxeq \(――――――→,\s\up17(周期变换))y=sinωxeq \(――――――→,\s\up17(相位变换))
y=sineq \b\lc\[\rc\](\a\vs4\al\c1(ω\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(φ,ω)))))=sin(ωx+φ)eq \(―――――――→,\s\up17(振幅变换))y=
Asin(ωx+φ).
注意:两种途径的变换顺序不同,其中变换的量也有所不同:(1)是先相位变换后周期变换,平移|φ|个单位.(2)是先周期变换后相位变换,平移eq \f(|φ|,ω)个单位,这是很易出错的地方,应特别注意.
2.类似地,y=Acs(ωx+φ)(A>0,ω>0)的图象也可由y=csx的图象变换得到.
1.将函数y=csx的图象向右平移eq \f(π,3)个单位长度,所得图象的解析式是( )
A.y=csx+eq \f(π,3) B.y=csx-eq \f(π,3)
C.y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3))) D.y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))
[答案] D
2.函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))在区间eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,2),π))上的简图是( )
[解析] 当x=0时,y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))=-eq \f(\r(3),2)<0,排除B,D.当x=eq \f(π,6)时,sineq \b\lc\(\rc\)(\a\vs4\al\c1(2×\f(π,6)-\f(π,3)))=sin0=0,排除C,故选A.
[答案] A
3.为了得到y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,5)))(x∈R)的图象,只需把函数y=3sin(x+eq \f(π,5))(x∈R)的图象上所有的点的( )
A.横坐标伸长到原来的2倍,纵坐标不变
B.横坐标缩短到原来的eq \f(1,2)倍,纵坐标不变
C.纵坐标伸长到原来的2倍,横坐标不变
D.纵坐标缩短到原来的eq \f(1,2)倍,横坐标不变
[解析] y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,5))),x∈R图象上所有点的横坐标缩短到原来的eq \f(1,2)倍,纵坐标不变得到y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,5))),故选B.
[答案] B
4.将函数y=sin2x的图象向左平移eq \f(π,4)个单位,再向上平移1个单位,所得图象的函数解析式是( )
A.y=cs2x B.y=1+cs2x
C.y=1+sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4))) D.y=cs2x-1
[解析] 将函数y=sin2x的图象向左平移eq \f(π,4)个单位,得到函数y=sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4))))),即y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,2)))=cs2x的图象,再向上平移1个单位,所得图象的函数解析式为y=1+cs2x.
[答案] B
5.把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象向右平移eq \f(π,4)个单位长度,再把所得图象上各点的横坐标缩短到原来的eq \f(1,2),所得图象对应的解析式为______________________.
[解析] 将函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象向右平移eq \f(π,4)个单位长度,得到函数y=sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))-\f(π,3)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(5π,6)))的图象,再将所得函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(5π,6)))的图象上各点的横坐标缩短为原来的eq \f(1,2),得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x-\f(5π,6)))的图象.
[答案] y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x-\f(5π,6)))
课后作业(五十四)
复习巩固
一、选择题
1.要得到函数y=sinx的图象,只需将函数y=sin(x-eq \f(π,3))的图象( )
A.向左平移eq \f(π,3)个单位长度
B.向右平移eq \f(π,3)个单位长度
C.向左平移eq \f(2π,3)个单位长度
D.向右平移eq \f(2π,3)个单位长度
[解析] 根据图象左、右平移的条件很容易得出答案应选A.
[答案] A
2.将函数y=sinx的图象上所有的点向右平移eq \f(π,10)个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,10))) B.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,5)))
C.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10))) D.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,20)))
[解析] 函数y=sinx的图象上的点向右平移eq \f(π,10)个单位长度可得函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,10)))的图象;横坐标伸长到原来的2倍(纵坐标不变)可得函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10)))的图象,所以所求函数的解析式是y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10))).
[答案] C
3.把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))的图象向右平移eq \f(π,8)个单位,所得图象对应的函数是( )
A.非奇非偶函数
B.既是奇函数又是偶函数
C.奇函数
D.偶函数
[解析] y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))图象向右平移eq \f(π,8)个单位得到y=sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,8)))-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,2)))=-cs2x的图象,y=-cs2x是偶函数.
[答案] D
4.为了得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))),x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点( )
A.向左平移eq \f(π,6)个单位长度,再把所得各点的横坐标缩短到原来的eq \f(1,3)(纵坐标不变)
B.向右平移eq \f(π,6)个单位长度,再把所得各点的横坐标缩短到原来的eq \f(1,3)(纵坐标不变)
C.向左平移eq \f(π,6)个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移eq \f(π,6)个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
[解析] 先将y=2sinx,x∈R的图象向左平移eq \f(π,6)个单位长度,得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6))),x∈R的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))),x∈R的图象.
[答案] C
5.设函数f(x)=csωx(ω>0),将y=f(x)的图象向右平移eq \f(π,3)个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )
A.eq \f(1,3) B.3 C.6 D.9
[解析] 将y=f(x)的图象向右平移eq \f(π,3)个单位长度后得到y=cseq \b\lc\[\rc\](\a\vs4\al\c1(ω\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3))))),所得图象与原图象重合,所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(ωx-\f(π,3)ω))=csωx,则-eq \f(π,3)ω=2kπ(k∈Z),得ω=-6k(k∈Z).又因为ω>0,所以ω的最小值为6,故选C.
[答案] C
二、填空题
6.用“五点法”画函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,3)))(ω>0)在一个周期内的简图时,五个关键点是eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6),0)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),2)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),0)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,12)π,-2)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6),0)),则ω=________.
[解析] 因为周期T=eq \f(5π,6)-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6)))=π,所以eq \f(2π,ω)=π,所以ω=2.
[答案] 2
7.将函数y=sinx的图象上所有点____________________,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))的图象,再将y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))的图象上所有点____________________,可得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,6)))的图象.
[答案] 向右平移eq \f(π,6)个单位长度 纵坐标不变,横坐标伸长到原来的2倍
8.将函数y=eq \f(1,2)sin2x的图象上所有点的横坐标伸长为原来的2倍,然后纵坐标缩短为原来的eq \f(1,2),则所得图象的函数解析式为________________________.
[解析] y=eq \f(1,2)sin2xeq \(――――――――――――→,\s\up17(横坐标伸长为),\s\d15(原来的2倍))y=eq \f(1,2)sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x))=eq \f(1,2)
sinxeq \(―――――――――→,\s\up17(纵坐标缩短为),\s\d15(原来的\f(1,2)))y=eq \f(1,4)sinx.即所得图象的解析式为y=eq \f(1,4)sinx.
[答案] y=eq \f(1,4)sinx
三、解答题
9.函数f(x)=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))-3的图象是由y=sinx的图象经过怎样的变换得到的?
[解] 先把函数y=sinx的图象向右平移eq \f(π,3)个单位,得y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))的图象;再把所得函数图象上所有点的横坐标缩短为原来的eq \f(1,2)倍(纵坐标不变),得y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象;然后把所得函数图象上所有点的纵坐标伸长到原来的5倍(横坐标不变)得函数y=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象,最后将所得函数图象向下平移3个单位长度,得函数y=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))-3的图象.
10.函数y=sin2x的图象向左平移φ(φ>0)个单位长度,得到的图象恰好关于直线x=eq \f(π,6)对称,求φ的最小值.
[解] y=sin2x的图象向左平移φ个单位长度,得y=sin2(x+φ),由于其图象关于直线x=eq \f(π,6)对称,故2×eq \f(π,6)+2φ=kπ+eq \f(π,2)(k∈Z),得φ=eq \f(kπ,2)+eq \f(π,12)(k∈Z),又φ>0,故φ的最小值为eq \f(π,12).
综合运用
11.为了得到函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))的图象,可以将函数y=sineq \f(x,2)的图象( )
A.向左平移eq \f(π,2)个单位长度
B.向左平移eq \f(π,4)个单位长度
C.向右平移eq \f(π,2)个单位长度
D.向右平移eq \f(π,4)个单位长度
[解析] y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))))
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,4)))=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2))))),故选A.
[答案] A
12.函数f(x)=sin(ωx+φ)的图象上所有的点向左平移eq \f(π,2)个单位长度.若所得图象与原图象重合,则ω的值不可能等于( )
A.4 B.6 C.8 D.12
[解析] 解法一:逐项代入检验,对B选项,f(x)=sin(6x+φ)图象向左平移eq \f(π,2)个单位得:y=sineq \b\lc\[\rc\](\a\vs4\al\c1(6\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))+φ))=sin(6x+φ+π)=-sin(6x+φ)的图象.
解法二:y=f(x)的图象向左平移eq \f(π,2)后得到y=
sineq \b\lc\[\rc\](\a\vs4\al\c1(ω\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))+φ))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,2)ω+φ)),其图象与原图象重合,有eq \f(π,2)ω=2kπ,即ω=4k,k∈Z,故选B.
[答案] B
13.将函数f(x)=sin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(ω>0,-\f(π,2)≤φ<\f(π,2)))图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移eq \f(π,6)个单位长度得到y=sinx的图象,则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=________.
[解析] y=sinx的图象向左平移eq \f(π,6)个单位长度,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))图象,再对每一点横坐标伸长为原来的2倍,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x+\f(π,6)))的图象即为f(x)=sin(ωx+φ)的图象,∴f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x+\f(π,6))),feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=eq \f(\r(2),2).
[答案] eq \f(\r(2),2)
14.某同学给出了以下论断:
①将y=csx的图象向右平移eq \f(π,2)个单位,得到y=sinx的图象;
②将y=sinx的图象向右平移2个单位,可得到y=sin(x+2)的图象;
③将y=sin(-x)的图象向左平移2个单位,得到y=
sin(-x-2)的图象;
④函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))的图象是由y=sin2x的图象向左平移eq \f(π,3)个单位而得到的.
其中正确的结论是________(将所有正确结论的序号都填上).
[解析] ①正确;②错,y=sinx的图象向右平移2个单位,得y=sin(x-2)的图象;③正确;④错,应向左平移eq \f(π,6)个单位.
[答案] ①③
15.已知函数f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4))),x∈R.
(1)利用“五点法”画出函数f(x)在一个周期eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2),\f(9π,2)))上的简图.
(2)先把f(x)的图象上所有点向左平移eq \f(π,2)个单位长度,得到f1(x)的图象;然后把f1(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到f2(x)的图象;再把f2(x)的图象上所有点的纵坐标缩短到原来的eq \f(1,3)倍(横坐标不变),得到g(x)的图象,求g(x)的解析式.
[解] (1)列表取值:描出五个关键点并用光滑连线连接,得到一个周期的简图.
(2)将f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4)))图象上所有点向左平移eq \f(π,2)个单位长度得到f1(x)=3sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))-\f(π,4)))
=3sineq \f(1,2)x的图象.
把 f1(x)=3sineq \f(1,2)x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到f2(x)=3sineq \f(1,4)x的图象,把f2(x)=3sineq \f(1,4)x的图象上所有点的纵坐标缩短到原来的eq \f(1,3)倍(横坐标不变)得到g(x)=sineq \f(1,4)x的图象.
所以g(x)的解析式g(x)=sineq \f(1,4)x.
x
π
eq \f(5π,2)
4π
eq \f(11π,2)
7π
eq \f(1,3)x-eq \f(π,3)
0
eq \f(π,2)
π
eq \f(3π,2)
2π
eq \f(3,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,3)))
0
eq \f(3,2)
0
-eq \f(3,2)
0
eq \f(x,2)+eq \f(π,3)
0
eq \f(π,2)
π
eq \f(3π,2)
2π
x
-eq \f(2π,3)
eq \f(π,3)
eq \f(4π,3)
eq \f(7π,3)
eq \f(10π,3)
f(x)
0
2
0
-2
0
x
eq \f(π,2)
eq \f(3π,2)
eq \f(5π,2)
eq \f(7π,2)
eq \f(9π,2)
eq \f(1,2)x-eq \f(π,4)
0
eq \f(π,2)
π
eq \f(3π,2)
2π
f(x)
0
3
0
-3
0
高中人教A版 (2019)5.6 函数 y=Asin( ωx + φ)表格教学设计: 这是一份高中人教A版 (2019)5.6 函数 y=Asin( ωx + φ)表格教学设计,共5页。
2021学年1.5 函数y=Asin(ωx+ψ)教学设计及反思: 这是一份2021学年1.5 函数y=Asin(ωx+ψ)教学设计及反思,共3页。教案主要包含了y=sin的图象的作法,y=Asin的图象的作法,小结,作业等内容,欢迎下载使用。
高中人教版新课标A1.5 函数y=Asin(ωx+ψ)教学设计: 这是一份高中人教版新课标A1.5 函数y=Asin(ωx+ψ)教学设计,共10页。