人教版新课标A选修2-31.1分类加法计数原理与分步乘法计.同步测试题
展开1-1 分类加法计数原理与分步乘法计数原理
[综合训练·能力提升]
一、选择题(每小题5分,共30分)
1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为
A.7 B.12 C.64 D.81
解析 要完成长裤与上衣配成一套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.
答案 B
2.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队方法有
A.11种 B.30种 C.56种 D.65种
解析 先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法.
答案 B
3.已知集合M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是
A.18 B.17 C.16 D.10
解析 分两类:第1类,M中的元素作横坐标,N中的元素作纵坐标,则有3×3=9个在第一、二象限内的点;第2类,N中的元素作横坐标,M中的元素作纵坐标,则有4×2=8个在第一、二象限内的点.由分类加法计数原理,共有9+8=17个点在第一、二象限内.
答案 B
4.某电子元件是由3个电阻组成的回路,其中有4个焊点A,B,C,D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况种数为
A.16 B.15 C.9 D.8
解析 ①1个焊点脱落有4种情况;②2个焊点脱落有6种情况;③3个焊点脱落有4种情况;④4个焊点脱落有1种情况,共有4+6+4+1=15(种)情况,故选B.
答案 B
5.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有
A.24种 B.18种 C.12种 D.6种
解析 解法一 (直接法)若黄瓜种在第一块土地上,则有3×2×1=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2×1=6种不同的种植方法.故共有6×3=18种不同的种植方法.
解法二 (间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有24-6=18种不同的种植方法.
答案 B
6.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有
A.36个 B.18个 C.9个 D.6个
解析 分3步完成,1,2,3这三个数中必有某一个数字被重复使用2次.
第1步,确定哪一个数字被重复使用2次,有3种方法;
第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;
第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.
故有3×3×2=18个不同的四位数.
答案 B
二、填空题(每小题5分,共15分)
7.设集合A={1,2,3,4},m,n∈A,则方程+=1表示焦点位于x轴上的椭圆有________个.
解析 由题意知m>n,当m=2时,n有1种选择;当m=3时,n有2种选择;当m=4时,n有3种选择.故共有1+2+3=6(个)满足题意的椭圆.
答案 6
8.如图,在由电键组A与B所组成的并联电路中,要接通电源,使电灯发光的方法种数是________.
解析 在电键组A中有2个电键,电键组B中有3个电键,应用分类加法计数原理,共有2+3=5种接通电源使电灯发光的方法.
答案 5
9.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种.
解析 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即2143,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应着3种填法,因此共有填法为3×3=9(种).
答案 9
三、解答题(本大题共3小题,共35分)
10.(10分)若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?
解析 分两类完成:
第1类,将A或B中有一个为0时,表示的直线为x=0或y=0,共2条.
第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成:
第1步,确定A的值,有4种不同的方法;
第2步,确定B的值,有3种不同的方法.
由分步乘法计数原理知,共可确定4×3=12条直线.
由分类加法计数原理知,方程所表示的不同直线的条数共有2+12=14.
答案 14
11.(12分)某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?
解析 第一类:既会排版又会印刷的2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有3×1=3种选法.
第二类:既会排版又会印刷的2人中被选出1人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步乘法计数原理知共有2×3×2=12种选法;再由分类加法计数原理知共有6+12=18种选法.
第三类:既会排版又会印刷的2人全被选出,同理共有16种选法.
所以共有3+18+16=37种选法.
答案 37
12.(13分)有一项活动,需在3名老师、8名男同学和5名女同学中选部分人员参加.
(1)若只需一人参加,有多少种不同的选法?
(2)若需老师、男同学、女同学各一人参加,有多少种不同的选法?
(3)若需一名老师、一名同学参加,有多少种不同的选法?
解析 (1)有三类:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.
由分类加法计数原理知,有3+8+5=16种选法.
(2)分三步:第1步选老师,有3种方法;第2步选男同学,有8种方法;第3步选女同学,有5种方法.由分步乘法计数原理知,共有3×8×5=120种选法.
(3)可分两类,每一类又分两步.
第1类,选一名老师再选一名男同学,有3×8=24种选法;
第2类,选一名老师再选一名女同学,共有3×5=15种选法.
由分类加法计数原理知,共有24+15=39种选法.
答案 (1)16 (2)120 (3)39
高中数学6.1 分类加法计数原理与分步乘法计数原理第1课时当堂检测题: 这是一份高中数学6.1 分类加法计数原理与分步乘法计数原理第1课时当堂检测题,共7页。
人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理课时作业: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理课时作业,共4页。
人教版新课标A选修2-31.1分类加法计数原理与分步乘法计.第2课时复习练习题: 这是一份人教版新课标A选修2-31.1分类加法计数原理与分步乘法计.第2课时复习练习题,共5页。