高中数学人教版新课标A必修11.3.2奇偶性精品第2课时2课时复习练习题
展开1.3.2 奇偶性
第二课时 奇偶性的应用(练习)
(建议用时:40分钟)
一、选择题
1.下列函数中,是偶函数,且在区间(0,1)上为增函数的是( )
A.y=|x| B.y=1-x
C.y= D.y=-x2+4
2.已知f(x)是偶函数,且在区间(0,+∞)上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( )
A.f(-0.5)<f(0)<f(-1)
B.f(-1)<f(-0.5)<f(0)
C.f(0)<f(-0.5)<f(-1)
D.f(-1)<f(0)<f(-0.5)
3.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )
A.(-∞,0] B.[0,+∞)
C.(-∞,+∞) D.[1,+∞)
4.一个偶函数定义在区间[-7,7]上,它在[0,7]上的图象如图1312,下列说法正确的是( )
图1312
A.这个函数仅有一个单调增区间
B.这个函数有两个单调减区间
C.这个函数在其定义域内有最大值是7
D.这个函数在其定义域内有最小值是-7
5.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是( )
A. B.
C. D.
二、填空题
6.函数f(x)在R上为偶函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.
7.已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为________.
8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.
三、解答题
9.(1)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=2x,求f(x)的解析式;
(2)设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x,求函数f(x),g(x)的解析式.
10.已知f(x)是定义在(-1,1)上的奇函数,且f(x)在(-1,1)上是减函数,解不等式f(1-x)+f(1-2x)<0.
1.若奇函数f(x)在(-∞,0)上的解析式为f(x)=x(1+x),则f(x)在(0,+∞)上有( )
A.最大值- B.最大值
C.最小值- D.最小值
2.设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )
A.0.5 B.-0.5
C.1.5 D.-1.5
3.如果函数F(x)=是奇函数,则f(x)=________.
4.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则<0的解集为________.
5.设定义在[-2,2]上的奇函数f(x)=x5+x3+b.
(1)求b值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m-1)>0,求实数m的取值范围.
高中数学3.2 函数的基本性质第2课时同步训练题: 这是一份高中数学3.2 函数的基本性质第2课时同步训练题,文件包含正文docx、答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质同步测试题: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质同步测试题,共3页。试卷主要包含了已知是,已知,且则,已知定义在上的奇函数满足则,函数在上单调递增,且为奇函数等内容,欢迎下载使用。
高中3.2 函数的基本性质练习: 这是一份高中3.2 函数的基本性质练习,共6页。试卷主要包含了已知是,已知,且则,已知定义在上的奇函数满足则,函数在上单调递增,且为奇函数,为上的奇函数,恒成立等内容,欢迎下载使用。