


第15章 分式 人教版八年级数学单元质检A卷(含答案)
展开
这是一份第15章 分式 人教版八年级数学单元质检A卷(含答案),共13页。
(9)分式—八年级上册数学人教版(2012)单元质检卷(A卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在、、、、、中,分式的个数是( )A.2 B.3 C.4 D.52.分式与的最简公分母是( )A. B. C. D.3.计算的结果是( )A. B. C. D.4.石墨烯是一种纳米材料,它的理论厚度仅为0.00000000034米,数据0.00000000034用科学记数法表示为( )A. B. C. D.5.如果分式的值为0,那么x的值为( )A.3或 B. C.3或0 D.36.已知,,,则a、b、c的大小关系为( )A. B. C. D.7.已知,计算的值是( )A. B.1 C.3 D.8.某乡镇决定对一段长的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了,结果提前4天完成任务.设原计划每天修建,那么下面所列方程中正确的是( )A. B.C. D.9.已知关于x的分式方程无解,则满足条件的所有a的和为( )A. B.1 C. D.10.甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,两次购买的饲料单价分别为m元/千克和n元/千克,而不管购买多少饲料.谁的购货方式更合算( )A.甲 B.乙 C.一样 D.不能确定二、填空题(每小题4分,共20分)11.当______时,分式无意义.12.已知分式,若把a,b的值都扩大到原来的5倍,则此时分式的值为_______________(填数字).13.若方程有增根,则__________.14.计算:_________.15.已知:,,,,…,,那么的值为___________.(用含x的代数式表示)三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)不改变分式的值,把分子、分母中x,y的系数化为整数.(1);(2).17.(8分)解分式方程(1);(2).18.(10分)核酸检测时需要先采集样本,采集样本结束后,再统一把样本送检测中心检验,且采集的样本和送达的样本的时间必须在4小时内完成,超过4小时送达,样本就会失效.已知A、B两个采样点到检测中心的路程分别为、,经过了解获得A、B两个采样点的送检车有如下信息:信息一:B采样点送检车的平均速度是A采样点送检车的平均速度1.2倍;信息二:A、B两个采样点送检车行驶的时间之和为2小时.若B采样点完成采集样本的时间2.8小时,判断样本送达检测中心后会不会失效?19.(10分)已知关于x的分式方程.(1)当时,求方程的解;(2)如果关于x的分式方程的解为正数,求a的取值范围;20.(12分)定义:若两个分式的和为n(n为正整数),则称这两个分式互为“n阶分式”,例如分式与互为“3阶分式”.(1)分式与互为“5阶分式”;(2)设正数x,y互为倒数,求证:分式与互为“2阶分式”;(3)若分式与互为“1阶分式”(其中a,b为正数),求的值.21.(12分)【阅读学习】阅读下面的解题过程.已知,求的值.解:由知,,即,,的值为.【类比探究】上题的解法叫做“倒数法”,请你利用“倒数法”解题.已知,求的值.【拓展延伸】已知,,,求的值.答案以及解析1.答案:A解析:、、、的分母中均不含有字母,因此它们是整式,不是分式,、的分母中含有字母,因此是分式,故分式的个数是2,故选:A.2.答案:C解析:分式与的最简公分母是.故选:C.3.答案:B解析:;故选B.4.答案:D解析:,故选:D.5.答案:D解析:由题意得:解得故答案为:.6.答案:A解析:∵,,∴故选:A.7.答案:A解析:∵∴.故选:A.8.答案:C解析:设原计划每天修建,则实际施工时每天修建,由题意得:,故选:C.9.答案:A解析:.方程两边乘,得,整理可得,当,即时,整式方程无解,即分式方程无解;当时,有或时,分式方程无解,此时或,解得或,经检验均为该方程的解,综上所述,或0或满足条件,所以.故选:A.10.答案:B解析:两次购买的饲料单价分别为m元/千克和n元/千克(m,n是正数,且),甲两次购买饲料的平均单价为(元/千克),乙两次购买饲料的平均单价为(元/千克);甲、乙两种饲料的平均单价的差是:m、n是正数,时,也是正数,乙的购货方式更合算.故选:B.11.答案:解析:分式无意义,,解得.故答案为:.12.答案:3解析:将a,b的值都扩大到原来的5倍可得:,故答案为:3.13.答案:-2解析:∵方程有增根,∴,解得,原方程去分母得,化简得,∴.故答案是:.14.答案:解析:,故答案为:.15.答案:解析:,,,则y的值3个一次循环,因为,则,故答案为:.16.答案:(1)(2)解析:(1).(2).17.答案:(1),经检验得是原方程的解(2),经检验得原方程无解解析:(1)去分母,得去括号,得移项、合并同类项,得解得检验:当时,是分式方程的解;(2)去分母,得去括号,得,移项、合并同类项,得解得,检验:当时,,是分式方程的增根,即原分式方程无解.18.答案:B采样点采集的样本不会失效解析:设A采样点送检车的平均速度是,则B采样点送检车的平均速度为,依题意得:解得:,经检验,是原方程的解,且符合题意,即A采样点送检车的平均速度是,B采样点送检车的平均速度为,∴B采样点送检车的行驶时间为.∵,∴B采样点采集的样本不会失效.19.答案:(1)(2)且解析:(1)把代入得:,方程两边同乘得:,去括号得:,移项合并同类项得:,未知数系数化为1得:,检验:把代入得:,原方程的解.(2),方程两边乘得:,去括号得:,移项合并同类项得:,未知数系数化为1得:,分式方程的解为正数,,解得:,,即,,解得:,a的取值范围是:且.20.答案:(1)(2)证明见解析(3)解析:(1)依题意,所求分式为A,即:,∴;(2)∵正数x,y互为倒数∴,即∴∴分式与互为“2阶分式”;(3)由题意得,等式两边同乘化简得:即:∴,即∴或0∵a,b为正数∴.21.答案:【类比探究】【拓展延伸】解析:【类比探究】由知,,即,,,.【拓展延伸】,,,,且,.,.
