初中数学3 勾股定理的应用同步测试题
展开
这是一份初中数学3 勾股定理的应用同步测试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 一个长方形抽屉长16厘米,宽12厘米,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )
2. 如图一棵高为18的大树被台风刮断.若树在离地面5处折断,则树顶端落在离树底部( )远处.
3. “折竹抵地”问题源自《九章算术》,即今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是一根竹子,原高1丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断处离地面的高度为( )
4. 下列各组数据中,不能作为直角三角形边长的是( )
5. 如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
6. 如图,长方体的长,宽,高分别为 ,,,蚂蚁在长方体表面爬行,从点A爬到点B的最短路程是( )
7. 海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面处折断,倒下后树顶端着地点A距树底端B的距离为,这棵大树在折断前的高度为( )
8. 如图,梯子斜靠在一竖直的墙上,这时为.如果梯子的顶端沿墙下滑,那么梯子底端也外移,则梯子的长为( )
9. 现有一个圆柱体水晶杯(容器厚度忽略不计),其底面圆的周长为,高为,在杯子内壁离容器底部的点B处有一滴蜂蜜,与蜂蜜相对,此时一只蚂蚁正好在杯子外壁,离容器上沿的点A处,则蚂蚁吃到蜂蜜需爬行的最短路径为( )
10. 如图,是一个三级台阶,它的每一级的长,宽和高分别等于,和,和是这个台阶的两个相对的端点,点上有一只蚂蚁,想到点去吃可口的食物,请你想一想,这只蚂蚁从点出发,沿着台阶面爬到点,最短线路是( )
11. 《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为( )
12. 如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
二、填空题
13. 如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树数断裂之前的高度为______.
14. 如图,铁路上A、D两点相距25千米,B,C为两村庄,于A,于D,已知,,现在要在铁路上建一个土特产品收购站,使得B、C两村到站的距离相等,则站应建在距点A____________千米.
15. 小明从A处出发沿北偏东的方向走了30米到达B处:小军也从A处出发,沿南偏东的方向走了40米到达C处,若B、C两处的距离为50米,则______.
16. 如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是_____.
三、解答题
17. 如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引素却行,去本八尺而索尽,问素长几何?译文:今有一整直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳子比木柱长3尺),牵着绳索退行,在距木柱底部8尺处时而绳索用尽,求木柱的长.
18. 一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?
19. 如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.
20. 如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.
(1)求梯子底端B外移距离BD的长度;
(2)猜想CE与BE的大小关系,并证明你的结论.
A.20厘米
B.18厘米
C.22厘米
D.24厘米
A.10
B.11
C.12
D.13
A.5.8尺
B.4.2尺
C.3尺
D.7尺
A.
B.
C.
D.
A.
B.
C.+1
D.3
A.5
B.
C.
D.7
A.
B.
C.
D.
A.24
B.25
C.15
D.20
A.
B.
C.
D.
A.
B.
C.
D.
A.5.45尺
B.4.55尺
C.5.8尺
D.4.2尺
A.
B.
C.
D.
相关试卷
这是一份初中数学北师大版八年级上册3 勾股定理的应用课时作业,共13页。
这是一份初中数学北师大版八年级上册3 勾股定理的应用当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学第一章 勾股定理3 勾股定理的应用精品练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。