所属成套资源:人教版九年级数学上册同步备课(分层作业)【原卷版+解析】
初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第一课时综合训练题
展开
这是一份初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第一课时综合训练题,共21页。
A.第7秒B.第9秒C.第11秒D.第13秒
2.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离的长度为( )
A.7mB.7.5mC.8mD.8.5m
3.竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为( )
A.B.C.D.
4.一位运动员在距篮筐正下方水平距离处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为时,达到最大高度,然后准确落入篮筐.如图所示,建立平面直角坐标系,已知篮筐中心到地面的距离为,该运动员身高,在这次跳投中,球在头顶上方处出手,球出手时,他跳离地面的高度是( )
A.B.C.D.
5.2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )
A. B.
C.D.
6.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )
A.方案1B.方案2C.方案3D.方案1或方案2
7.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟
8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为( )
A.7B.8C.9D.10
9.如图,四边形中,,若,则四边形的面积最大值为( )
A.6B.18C.36D.144
10.根据物理学规律,如果不考虑空气阻力,以的速度将小球沿与地面成角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是,当飞行时间t为 s时,小球达到最高点.
11.如图,用一段长为的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为 .
12.如图,一个长为5,宽为3的矩形被平行于边的两条直线所割,其中矩形的左上角是一个边长为的正方形,则阴影部分面积的最小值为 .
13.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.
(1)求y关于x的函数表达式;
(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.
能力提升
1.以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2= .
2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若球能越过球网,又不出边界,则h的取值范围为 .
3.如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为 .
4.如图1所示的某种发石车是古代一种远程攻击的武器,发射出去的石块的运动轨迹是抛物线的一部分,且距离发射点20米时达到最大高度10米.将发石车置于山坡底部O处,山坡上有一点A,点A与点O的水平距离为30米,与地面的竖直距离为3米,AB是高度为3米的防御墙.若以点O为原点,建立如图2所示的平面直角坐标系.
(1)求石块运动轨迹所在抛物线的解析式;
(2)试通过计算说明石块能否飞越防御墙AB;
(3)在竖直方向上,试求石块飞行时与坡面OA的最大距离.
拔高拓展
1.如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
2.园林部门计划在某公园建一个长方形苗圃.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃的一边长为x米.
(1)长为________米(包含门宽,用含x的代数式表示);
(2)若苗圃的面积为,求x的值;
(3)当x为何值时,苗圃的面积最大,最大面积为多少?
22.3 实际问题与二次函数(第一课时) 分层作业
基础训练
1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )
A.第7秒B.第9秒C.第11秒D.第13秒
【详解】解:∵此炮弹在第6秒与第13秒时的高度相等,
∴抛物线的对称轴是:,
∴炮弹所在高度最高时:时间是第9.5秒,
∵炮弹所处的高度与时间的函数图象的开口向下,
∴距离对称轴越近的点函数值越大,即炮弹的高度越高,
∴第9秒时炮弹所在高度最高,故B正确.
故选:B.
2.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离的长度为( )
A.7mB.7.5mC.8mD.8.5m
【解答】解:把A代入得:
,
∴,
∴,
令得,
解得(舍去)或,
∴实心球飞行的水平距离OB的长度为8m,
故选:C.
3.竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为( )
A.B.C.D.
【详解】解:依题意得:=,=,
把=,=代入得
当时,
故小球达到的离地面的最大高度为:
故选:C
4.一位运动员在距篮筐正下方水平距离处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为时,达到最大高度,然后准确落入篮筐.如图所示,建立平面直角坐标系,已知篮筐中心到地面的距离为,该运动员身高,在这次跳投中,球在头顶上方处出手,球出手时,他跳离地面的高度是( )
A.B.C.D.
【详解】∵当球运行的水平距离为时,达到最大高度,∴抛物线的顶点坐标为,∴设抛物线的解析式为.由题意知图像过点,∴,解得,抛物线的解析式为.设球出手时,他跳离地面的高度为.
∵抛物线的解析式为,球出手时,球的高度为.
∴,∴.
故选:A.
5.2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )
A. B.
C.D.
【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)
设排球运动路线的函数解析式为:y=ax2+bx+c,
∵排球经过A、B、C三点,
,解得: ,
∴排球运动路线的函数解析式为,
故选:A.
6.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )
A.方案1B.方案2C.方案3D.方案1或方案2
【详解】解:方案1,设米,则米,
则菜园的面积
当时,此时散架的最大面积为8平方米;
方案2,当∠时,菜园最大面积平方米;
方案3,半圆的半径
此时菜园最大面积平方米>8平方米,
故选:C
7.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟
【详解】将(3,0.8)(4,0.9)(5,0.6)代入得:
②-①和③-②得
⑤-④得,解得a=﹣0.2.
将a=﹣0.2.代入④可得b=1.5.
对称轴=.
故选C.
8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为( )
A.7B.8C.9D.10
【详解】解:当y=14时,,
解得,,
∴A(,14),C(,14),
∴AC=.
故选:C.
9.如图,四边形中,,若,则四边形的面积最大值为( )
A.6B.18C.36D.144
【详解】如图,设AC、BD交于点M
设
四边形的面积即四边形的面积
当时,四边形的面积最大,最大为18.
故选:B.
10.根据物理学规律,如果不考虑空气阻力,以的速度将小球沿与地面成角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是,当飞行时间t为 s时,小球达到最高点.
【详解】根据题意,有,
当时,有最大值.
故答案为:2.
11.如图,用一段长为的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为 .
【详解】解:设围栏垂直于墙的一边长为x米,则平行于墙的一边长为米,
∴围栏的面积,
∴当时,S取最大值,最大值为32,
故答案为:32.
12.如图,一个长为5,宽为3的矩形被平行于边的两条直线所割,其中矩形的左上角是一个边长为的正方形,则阴影部分面积的最小值为 .
详解】设阴影部分的面积为,其中,
则,
当时,有最小值为7,
故答案为:7.
13.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.
(1)求y关于x的函数表达式;
(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.
【详解】(1)解∶∵当水平距离为3m时,实心球行进至最高点3m处,
∴设,
∵经过点(0, ),
∴
解得∶
∴,
∴y关于x的函数表达式为;
(2)解:该女生在此项考试中是得满分,理由如下∶
∵对于二次函数,当y=0时,有
∴,
解得∶, (舍去),
∵>6.70,
∴该女生在此项考试中是得满分.
能力提升
1.以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2= .
【详解】解:由题意得,图1中的函数图像解析式为:h=v1t4.9t2,令h=0,或(舍去),,
图2中的函数解析式为:h=v2t4.9t2, 或(舍去),,
∵h1=2h2,
∴=2,即:=或=-(舍去),
∴t1:t2=:=,
故答案是:.
2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若球能越过球网,又不出边界,则h的取值范围为 .
【详解】解:点A(0,2),将点A的坐标代入抛物线表达式得:2=a(0﹣6)2+h,
解得:a=,
∴抛物线的表达式为y=(x﹣6)2+h,
由题意得:当x=9时,y=(x﹣6)2+h=(9﹣6)2+h>2.43,
解得:h>;
当x=18时,y=(x﹣6)2+h=(18﹣6)2+h≤0,
解得:h≥,
故h的取值范围是h≥.
故答案为:
3.如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为 .
【详解】解:∵抛物线y=x2﹣5x+4,
∴该抛物线的对称轴是直线x,点D的坐标为(0,4),
∴OD=4,
∵抛物线y=x2﹣5x+4经过点C、D,
∵四边形ABCD为菱形,AB在x轴上,
∴CD∥AB,即CD∥x轴,
∴CD2=5,
∴AD=5,
∵∠AOD=90°,OD=4,AD=5,
∴AO3,
∵AB=5,
∴OB=5﹣3=2,
∴点B的坐标为(2,0),
故答案为:(2,0).
4.如图1所示的某种发石车是古代一种远程攻击的武器,发射出去的石块的运动轨迹是抛物线的一部分,且距离发射点20米时达到最大高度10米.将发石车置于山坡底部O处,山坡上有一点A,点A与点O的水平距离为30米,与地面的竖直距离为3米,AB是高度为3米的防御墙.若以点O为原点,建立如图2所示的平面直角坐标系.
(1)求石块运动轨迹所在抛物线的解析式;
(2)试通过计算说明石块能否飞越防御墙AB;
(3)在竖直方向上,试求石块飞行时与坡面OA的最大距离.
【详解】(1)解:设石块的运动轨迹所在抛物线的解析式为y=a(x﹣20)2+10.
把(0,0)代入,得400a+10=0,解得a=﹣.
∴y=﹣(x﹣20)2+10.即y=﹣x2+x(0≤x≤40).
(2)解:把x=30代入y=﹣x2+x,得y=﹣×900+30=7.5.
∵7.5>3+3,∴石块能飞越防御墙AB.
(3)解:设直线OA的解析式为y=kx(k≠0).
把(30,3)代入,得3=30k,
∴k=.
故直线OA的解析式为y=x.
设直线OA上方的抛物线上的一点P的坐标为(t,﹣t2+t).
过点P作PQ⊥x轴,交OA于点Q,则Q(t,t).
∴PQ=﹣t2+t﹣t=﹣t2+t=﹣(t﹣18)2+8.1.
∴当t=18时,PQ取最大值,最大值为8.1.
答:在竖直方向上,石块飞行时与坡面OA的最大距离是8.1米.
拔高拓展
1.如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
【详解】(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,
将x=0,y=1.9代入上式并解得:a=﹣,
故抛物线的表达式为:y=﹣(x﹣7)2+2.88;
当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,
当x=18时,y=﹣(x﹣7)2+2.88=0.64>0,
故这次发球过网,但是出界了;
(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,
在Rt△OPQ中,OQ=18﹣1=17,
当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),
∴OP=19,而OQ=17,
故PQ=6=8.4,
∵9﹣8.4﹣0.5=0.1,
∴发球点O在底线上且距右边线0.1米处.
2.园林部门计划在某公园建一个长方形苗圃.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃的一边长为x米.
(1)长为________米(包含门宽,用含x的代数式表示);
(2)若苗圃的面积为,求x的值;
(3)当x为何值时,苗圃的面积最大,最大面积为多少?
【详解】(1)∵木栏总长32米,两处各留2米宽的门,设苗圃的一边长为x米,
BC的长为32-3x+4=(36-3x)米,
故答案为:(36-3x);
(2)根据题意得,,
解得,x=4或x=8,
∵当x=4时,36-3x=24>14,
∴x=4舍去,
∴x的值为8;
(3)设苗圃的面积为w,
,
∵4
相关试卷
这是一份初中数学人教版(2024)九年级上册22.3 实际问题与二次函数第二课时同步测试题,共26页。试卷主要包含了农特产品展销推荐会在杨凌举行等内容,欢迎下载使用。
这是一份数学人教版(2024)第二章 整式的加减2.2 整式的加减综合训练题,共18页。试卷主要包含了下列式子中去括号错误的是,与结果相同的是,若,则的值为,学校组织师生参加研学活动,化简, 等内容,欢迎下载使用。
这是一份人教版(2024)七年级上册4.3.1 角课时训练,共16页。试卷主要包含了下图中用量角器测得的度数是,下列各角中是钝角的是,下列表示图中角的方法不正确的是,化为用度表示是,请计算 ,比较大小等内容,欢迎下载使用。