人教版(2024)九年级上册23.2.1 中心对称精品课件ppt
展开理解中心对称掌握中心对称的性质
2. 对应点与旋转中心所连线段的夹角等于旋转角
1. 对应点到旋转中心的距离相等;
3. 旋转前、后的图形全等.
连中心、转角度、取相等、画图形 .
活动一 观察下列美丽的图案,从旋转的角度来看有什么共同的特征
绕点 O 旋转 180°两个图案能够完全重合
问题2:如图,线段 AC、BD 相交于点 O,OA = OC,OB = OD. 把△OCD 绕点 O 旋转 180°,你有什么发现?
把一个图形绕着某一点旋转 180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心). 这两个图形在旋转后能够重合的对应点叫做关于对称中心的对称点.
1.下列五组图形中,左边的图形与右边的图形成中心对称的有( ) A.1 组 B.2 组 C.3 组 D.4 组
图形沿轴折叠(翻转)
图形绕中心旋转180°
中心对称与轴对称的异同
活动二 类比旋转,探究中心对称的性质1.中心对称是旋转吗?有什么关系?2.猜想中心对称有那些性质同,你怎样得到?
1. 中心对称的两个图形是全等图形.
2. 中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心所平分(即每组对称点与对称中心三点共线);
活动三 运用中心对称的性质,思考怎样做有关于其点的中心对称
1.如图1,选择点 O 为对称中心,画出点 A 关于点 O 的对称点 A';2.如图2,选择点 O 为对称中心,画出与△ABC 关于点 O 对称的△A'B'C'.
连中心、顺延长、取相等、画图形
例1 如图,已知四边形 ABCD 和点 O,试画出四边形 ABCD 关于点 O 成中心对称的图形 A'B'C'D'.
例2 如图,已知 △ABC 与 △A′B′C′ 成中心对称,找出它们的对称中心 O.
2. 每组对称点与对称中心三点共线
1. 两个图形是全等图形.
把一个图形绕着某一点旋转 180°,如果它能够与另一个图形重合
2. 作中心对称的中心
1. 关于点的中心对称
1. 如下所示的 4 组图形中,左边数字与右边数字成中心对称的有 ( ) A. 1 组 B. 2 组 C. 3 组 D. 4 组
2. 如图,△ABC 与△A′B′C′ 关于点 O 成中心对称,则下列结论不成立的是( )A.点 A 与点 A′ 是对称点B.BO = B′OC.AB = A′B′D.∠ACB =∠C′A′B′
如图,已知 △AOB 与 △DOC 成中心对称,△AOB 的面积是 12,AB=6,则 △DOC 中 CD 边上的高为_____.
如图,已知等边△ABC 和点 O,画△A′B′C′,使△A′B′C′ 和 △ABC 关于点 O 成中心对称.
人教版九年级上册23.2.1 中心对称评课ppt课件: 这是一份人教版九年级上册<a href="/sx/tb_c88757_t3/?tag_id=26" target="_blank">23.2.1 中心对称评课ppt课件</a>,共28页。PPT课件主要包含了中心对称的性质,确定对称中心的方法,解如图所示等内容,欢迎下载使用。
初中数学人教版九年级上册23.2.1 中心对称评课课件ppt: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c88757_t3/?tag_id=26" target="_blank">23.2.1 中心对称评课课件ppt</a>,共29页。PPT课件主要包含了中心对称的定义,要点理解,轴对称,中心对称,ACCF,△FGE,3-1,<AD<7等内容,欢迎下载使用。
初中数学人教版九年级上册23.2.1 中心对称精品ppt课件: 这是一份初中数学人教版九年级上册23.2.1 中心对称精品ppt课件,共40页。PPT课件主要包含了你发现了什么等内容,欢迎下载使用。