


- 人教版七年级数学下册《同步考点解读•专题训练》(培优特训)专项5.3平行线模型(猪蹄形)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册《同步考点解读•专题训练》(培优特训)专项5.4平行线模型(铅笔模型)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册《同步考点解读•专题训练》第五章相交线与平行线单元检测卷(A卷)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册《同步考点解读•专题训练》第五章相交线与平行线单元检测卷(B卷)(原卷版+解析) 试卷 0 次下载
- 人教版七年级数学下册《同步考点解读•专题训练》(培优特训)专项6.1实数综合八大类型(原卷版+解析) 试卷 0 次下载
人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线练习
展开【结论】如图所示,AB∥EF,则∠B+∠D=∠C+∠E.
【证明】如图,过点C作MN∥AB,过点D作PQ//AB.
∵AB∥EF,∴AB∥MN∥PQ∥EF.
∴∠B=∠BCN,∠CDP=∠DCN,∠PDE=∠E,
∴∠B+∠CDP+∠PDE=∠BCN+∠DCN+∠E,
∴∠B+∠CDE=∠BCD+∠E,得证.
锯齿模型的变换解题思路
拆分成猪蹄模型和内错角 拆分成2个猪蹄模型
1.(2021秋•雅安期末)如图,AB∥EF,∠BCD=90°,探索图中角α,β,γ之间的关系式正确的是( )
A.α+β+γ=360°B.α+β=γ+90°C.α+γ=βD.α+β+γ=180°
2.(2022春•西湖区校级期中)如图,AB∥CD,点E为AB上方一点,FB、CG分别为∠EFG、∠ECD的角平分线,若∠E+2∠G=210°,则∠EFG的度数为( )
A.140°B.150°C.130°D.160°
3.(2022春•林州市期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )
A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°
4.(2021春•硚口区月考)如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是( )
A.①②③B.②④C.①②④D.①④
5.(2022秋•肇源县期中)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F的度数 .
6.(龙泉驿区期中)如图,若直线a∥b,那么∠x= 度.
7.(2022春•富县期末)如图,点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
求证:∠E=∠F.
8.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.
(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:
①如图1,若EG⊥FG,则∠P的度数为 ;
②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;
(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.
9.(2022春•铜仁市期末)2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.
10.(2022春•长沙期中)问题情境
我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.
问题初探
(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.
分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.
由分析得,请你直接写出:∠CAF的度数为 ,∠EMC的度数为 .
类比再探
(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.
(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.
11.(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)试证明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.
12.(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.
小明说明的过程是这样的:“过点P作PE∥AB,…”
请按照小明的思路写出完整的解答说明过程.
(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;
②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.
请在①②任选一个问题进行解答.
(3)如图4,若a∥b,直接写出图中x的度数(不用说理).
13.(2019春•全南县期末)(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.
(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.
(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.
14.(黄冈期中)如图(a),已知∠BAG+∠AGD=180°,AF、EF、EG是三条折线段.
(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;
(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.
(培优特训)专项5.5 平行线模型-锯齿模型
【结论】如图所示,AB∥EF,则∠B+∠D=∠C+∠E.
【证明】如图,过点C作MN∥AB,过点D作PQ//AB.
∵AB∥EF,∴AB∥MN∥PQ∥EF.
∴∠B=∠BCN,∠CDP=∠DCN,∠PDE=∠E,
∴∠B+∠CDP+∠PDE=∠BCN+∠DCN+∠E,
∴∠B+∠CDE=∠BCD+∠E,得证.
锯齿模型的变换解题思路
拆分成猪蹄模型和内错角 拆分成2个猪蹄模型
1.(2021秋•雅安期末)如图,AB∥EF,∠BCD=90°,探索图中角α,β,γ之间的关系式正确的是( )
A.α+β+γ=360°B.α+β=γ+90°C.α+γ=βD.α+β+γ=180°
【答案】B
【解答】解:过点C作CM∥AB,过点D作DN∥AB,
∵AB∥EF,
∴AB∥CM∥DN∥EF,
∴∠BCM=α,∠DCM=∠CDN,∠EDN=γ,
∵β=∠CDN+∠EDN=∠CDN+γ①,∠BCD=α+∠CDN=90°②,
由①②得:α+β﹣γ=90°.
故选:B.
2.(2022春•西湖区校级期中)如图,AB∥CD,点E为AB上方一点,FB、CG分别为∠EFG、∠ECD的角平分线,若∠E+2∠G=210°,则∠EFG的度数为( )
A.140°B.150°C.130°D.160°
【答案】A
【解答】解:过G作GM∥AB,
∴∠2=∠5,
∵AB∥CD,
∴MG∥CD,
∴∠6=∠4,
∴∠G=∠5+∠6=∠2+∠4,
∵FB、CG分别为∠EFG,∠ECD的角平分线,
∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,
∴∠E+∠EFG+∠ECD=210°,
∵AB∥CD,
∴∠ENB=∠ECD,
∴∠E+∠EFG+∠ENB=210°,
∵∠1=∠E+∠ENB,
∴∠1+∠EFG=∠1+∠1+∠2=210°,
∴3∠1=210°,
∴∠1=70°,
∴∠EFG=2×70°=140°.
故选:A.
3.(2022春•林州市期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )
A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°
【答案】C
【解答】解:延长DC交AB与G,延长CD交EF于H.
在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,
∵AB∥EF,
∴∠1=∠2,
∴90°﹣α=β﹣γ,即α+β﹣γ=90°.
故选:C.
4.(2021春•硚口区月考)如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是( )
A.①②③B.②④C.①②④D.①④
【答案】D
【解答】解:∵∠FMA=∠FGC
∴AB∥CD
∴①正确;
过点F作FP∥AB,HQ∥AB,
∵AB∥CD,
∴FP∥AB∥HQ∥CD,
设∠NEB=x,∠HGC=y,则∠FEN=2x,∠FGH=2y
∴∠EHG=∠EHQ+∠GHQ=∠AEH+∠HGC=∠NEB+∠HGC=x+y,
∠EFM=∠BEF﹣∠FME=∠BEF﹣∠AMG=∠BEF﹣(180°﹣∠FGC)=x+2x﹣(180°﹣y﹣y)=3x+3y﹣180°,
∴2∠EFM=6x+6y﹣360°,
∴∠EHG≠2∠EFM
∴②错误;
∴∠EHG+∠EFM=x+y+3x+3y﹣180°=4x+4y﹣180°≠90°,
∴③错误;
∴3∠EHG﹣∠EFM=3(x+y)﹣(3x+3y﹣180°)=180°,
∴④正确.
综上所述,正确答案为①④.
故选:D.
5.(2022秋•肇源县期中)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F的度数 .
【答案】 50°
【解答】解:连接BC,
∵AB∥CD,
∴∠ABC=∠BCD,
∵∠1=∠2,
∴∠EBC=∠BCF,
∴EB∥CF,
∴∠F=∠E=50°.
故答案为:50°.
6.(龙泉驿区期中)如图,若直线a∥b,那么∠x= 度.
【答案】64
【解答】解:令与130°互补的角为∠1,如图所示.
∵∠1+130°=180°,
∴∠1=50°.
∵a∥b,
∴x+48°+20°=∠1+30°+52°,
∴x=64°.
故答案为:64.
7.(2022春•富县期末)如图,点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
求证:∠E=∠F.
【解答】证明:∵∠BAP+∠APD=180°(已知),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠BAP=∠APC(两直线平行,内错角相等),
又∵∠1=∠2(已知),
∠3=∠BAP﹣∠1,
∠4=∠APC﹣∠2,
∴∠3=∠4(等式的性质),
∴AE∥PF(内错角相等,两直线平行),
∴∠E=∠F(两直线平行,内错角相等).
8.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.
(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:
①如图1,若EG⊥FG,则∠P的度数为 ;
②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;
(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.
【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,
∴∠BEG=∠EGN,
∵AB∥CD,
∴∠NGF=∠GFD,
∴∠EGF=∠BEG+∠GFD,
同理可得∠EPF=∠BEP+∠PFD,
∵EG⊥FG,
∴∠EGF=90°,
∵EP平分∠BEG,FP平分∠DFG;
∴∠BEP=BEG,∠PFD=GFD,
∴∠EPF=(∠BEG+∠GFD)=EGF=45°,
故答案为:45°;
②如图,过点Q作QR∥CD,
∵∠BEG=40°,
∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,
∠GEQ=∠BEG=40°,∠GFD=∠QFD,
设∠GFD=∠QFD=α,
∵QR∥CD,AB∥CD,
∴∠EQR=180°﹣∠QEB=180°﹣2∠QEG=100°,
∵CD∥QR,
∴∠DFQ+∠FQR=180°,
∴α+∠FQR=180°,
∴α+∠FQE=80°,
∴∠FQE=80°﹣α,
由①可知∠G=2∠P=∠BEG+∠GFD=40°+α,
∴∠FQE+2∠P=80°﹣α+40°+α=120°;
(2)结论:∠OEA+2∠PFC=160°.
理由:∵在AB的上方有一点O,若FO平分∠GFC,线段GE的延长线平分∠OEA,设H为线段GE的延长线上一点,
∴∠OFC=∠OFG,∠OEH=∠HEA,
设∠OFC=∠OFG=β,∠OEH=∠HEA=α,
如图,过点O作OT∥AB,则OT∥CD,
∴∠TOF=∠OFC=β,∠TOE=∠OEA=2α,
∴∠EOF=β﹣2α,
∵∠HEA=∠BEG=a,∠GFD=180°﹣2β,
由(1)可知∠G=∠BEG+∠GFD=α+180°﹣2β,
∵∠EOF+∠EGF=100°,
∴β﹣2α+α+180°﹣2β=100°,
∴α+β=80°,
∴∠OEA+∠OFC=80°,
∴∠OEA+2∠PFC=160°.
9.(2022春•铜仁市期末)2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.
【解答】解:方法一:延长AB交直线DE于点G,
∵AG∥CD,
∴∠CDE=∠AGE=60°,
∵AF∥DE,
∴∠BAF=∠AGE=60°;
方法二:过点B作BM∥AF,过点C作CN∥ED,
∴∠BAF=∠3,∠CDE=∠4=60°,
∵AF∥DE,
∴BM∥CN,
∴∠1=∠2,
∵AB∥CD,
∴∠ABC=∠BCD,
∴∠ABC﹣∠1=∠BCD﹣∠2,
∴∠3=∠4,
∴∠BAF=∠CDE=60°.
∴∠BAF的度数为60°.
10.(2022春•长沙期中)问题情境
我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.
问题初探
(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.
分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.
由分析得,请你直接写出:∠CAF的度数为 ,∠EMC的度数为 .
类比再探
(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.
(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.
【解答】解:(1)由题可得,∠CAF=∠BAF﹣∠BAC=90°﹣60°=30°,
∠EMC=∠BCH=90°﹣30°=60°;
故答案为:30°,60°;
(2)∠EMC+∠CAF=90°,理由:
证明:如图,
过C作CH∥GF,则∠CAF=∠ACH,
∵DE∥GF,CH∥GF,
∴CH∥DE,
∴∠EMC=∠HCM,
∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°;
(3)∠BAG﹣∠BMD=30°,理由:
证明:如图,
过B作BK∥GF,则∠BAG=∠KBA,
∵BK∥GF,DE∥GF,
∴BK∥DE,
∴∠BMD=∠KBM,
∴∠BAG﹣∠BMD=∠ABK﹣∠KBM=∠ABC=30°.
11.(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)试证明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.
【解答】(1)证明:作OM∥AB,如图1,
∴∠1=∠BEO,
∵AB∥CD,
∴OM∥CD,
∴∠2=∠DFO,
∴∠1+∠2=∠BEO+∠DFO,
即:∠O=∠BEO+∠DFO.
(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:
作OM∥AB,PN∥CD,如图2,
∵AB∥CD,
∴OM∥PN∥AB∥CD,
∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,
∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,
∴∠O+∠PFC=∠BEO+∠P.
12.(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.
小明说明的过程是这样的:“过点P作PE∥AB,…”
请按照小明的思路写出完整的解答说明过程.
(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;
②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.
请在①②任选一个问题进行解答.
(3)如图4,若a∥b,直接写出图中x的度数(不用说理).
【解答】解:(1)过点P作PE∥AB,
∵AB∥PE,
∴∠BAP+∠APE=180°,
∵CD∥PE,
∴∠DCP+CPE=180°,
∴∠BAP+∠APE+∠DCP+CPE=360°,
∴∠BAP+∠APC+∠PCD=360°;
(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,
∵PE∥AB,
∴∠BAP+∠APE=180°,
∵AB∥CD,
∴PE∥QF,
∴∠EPQ+∠PQF=180°,
∵QF∥CD,
∴∠FQC+∠QCD=180°,
∵∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,
∴∠BAP+∠APQ+∠PQC+∠QCD=540°;
(3)x=72°.
13.(2019春•全南县期末)(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.
(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.
(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.
【解答】解:(1)过点E作EF∥AB
∵∠B=25°
∴∠BEF=∠B=25°
∵∠BED=80°
∴∠DEF=∠BED﹣∠BEF=55°
∵∠D=55°
∴∠D=∠DEF
∴EF∥CD
∴AB∥CD
(2)过点C作CD∥AB
∴∠B=∠BCD
∵AB∥EF
∴CD∥EF
∴∠F=∠DCF
∵∠BCF=∠BCD+∠DCF
∴∠BCF=∠B+∠F
(3)∠1+∠3+∠5=∠2+∠4.
由(1)(2)可得:∠1+∠3+∠5=∠2+∠4
14.(黄冈期中)如图(a),已知∠BAG+∠AGD=180°,AF、EF、EG是三条折线段.
(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;
(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.
【解答】解:(1)∵∠BAG+∠AGD=180°,
∴AB∥CD,
∴∠BAG=∠AGC,
∵∠E=∠F,
∴AF∥EG,
∴∠FAG=∠AGE,
∴∠BAG﹣∠FAG=∠AGC﹣∠AGE
∴∠1=∠2,
(2)由(1)可知:AB∥CD,
∴∠1+∠GAF=∠2+∠EGA,
∵∠E+∠EGA=∠F+∠GAF,
∴上述两式相加得:∴∠1+∠GAF+∠E+∠EGA=∠2+∠EGA+∠F+∠GAF
∴∠1+∠E=∠2+∠F;
人教版七年级数学下册同步知识点剖析精品讲义5.5铅笔头模型锯齿模型翘脚模型(原卷版+解析): 这是一份人教版七年级数学下册同步知识点剖析精品讲义5.5铅笔头模型锯齿模型翘脚模型(原卷版+解析),共39页。
初中数学人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线习题: 这是一份初中数学人教版七年级下册<a href="/sx/tb_c88526_t7/?tag_id=28" target="_blank">第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线习题</a>,共74页。
人教版七年级下册第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线随堂练习题: 这是一份人教版七年级下册<a href="/sx/tb_c88526_t7/?tag_id=28" target="_blank">第五章 相交线与平行线5.2 平行线及其判定5.2.1 平行线随堂练习题</a>,共74页。