搜索
    上传资料 赚现金
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2023-2024学年高一数学下册同步学与练(苏教版)-第15章 概率章末题型归纳总结(原卷版).docx
    • 解析
      2023-2024学年高一数学下册同步学与练(苏教版)-第15章 概率章末题型归纳总结(解析版).docx
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)01
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)02
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)03
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)01
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)02
    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)

    展开
    这是一份2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版),文件包含2023-2024学年高一数学下册同步学与练苏教版-第15章概率章末题型归纳总结原卷版docx、2023-2024学年高一数学下册同步学与练苏教版-第15章概率章末题型归纳总结解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。

    第15章 概率章末题型归纳总结 章末题型归纳目录模块一:本章知识思维导图模块二:典型例题经典题型一:互斥事件、对立事件与相互独立事件经典题型二:古典概型经典题型三:相互独立事件概率的计算经典题型四:概率综合问题模块三:数学思想与方法①分类与整合思想②等价转换思想③函数与方程的思想模块一:本章知识思维导图 模块二:典型例题经典题型一:互斥事件、对立事件与相互独立事件例1.(多选题)(2024·高一·江苏·阶段练习)连掷一枚均匀骰子两次,所得向上的点数分别为a,b,记,下列说法错误的是(    )A.事件“”的概率为 B.事件“m是奇数”与“”为互斥事件C.事件“”的概率为 D.事件“m为偶数”与“”互为独立事件例2.(多选题)(2024·高一·安徽亳州·期末)中国四大名楼是一种泛称,特指山西永济鹳雀楼、江西南昌滕王阁、湖北武汉黄鹤楼、湖南岳阳岳阳楼.记事件“只去黄鹤楼”,事件“至少去两个名楼”,事件“只去一个名楼”,事件“一个名楼也不去”,事件“至多去一个名楼”,则下列命题正确的是(    )A.E与H是互斥事件 B.F与I是互斥事件,且是对立事件C. D.例3.(多选题)(2024·高一·湖南岳阳·期末)将一枚质地均匀且标有数字1,2,3,4,5,6的骰子随机掷两次,记录每次正面朝上的数字,甲表示事件“第一次掷出的数字是1”,乙表示事件“第二次掷出的数字是2”,丙表示事件“两次掷出的数字之和是8”,丁表示事件“两次掷出的数字之和是7”.则(    )A.事件甲与事件丙是互斥事件B.事件甲与事件丁是相互独立事件C.事件乙包含于事件丙D.事件丙与事件丁是对立事件例4.(多选题)(2024·高一·山东日照·期末)一个袋子中有标号分别为1,2,3,4的4个小球,除标号外无差异.不放回地取两次,每次取出一个.事件“两次取出球的标号为1和4”,事件“第二次取出球的标号为4”,事件“两次取出球的标号之和为5”,则(    )A. B.C.事件与不互斥 D.事件与相互独立例5.(多选题)(2024·高一·河南焦作·期末)一个不透明袋子中装有大小和质地完全相同的2个红球和3个白球,从袋中一次性随机摸出2个球,则(   )A.“摸到2个红球”与“摸到2个白球”是互斥事件B.“至少摸到1个红球”与“摸到2个白球”是对立事件C.“摸出的球颜色相同”的概率为D.“摸出的球中有红球”与“摸出的球中有白球”相互独立例6.(多选题)(2024·高二·四川攀枝花·期末)某人打靶时连续射击两次,记事件为“第一次中靶”,事件为“至少一次中靶”,事件为“至多一次中靶”,事件为“两次都没中靶”.下列说法正确的是(    )A. B.与是互斥事件C. D.与是互斥事件,且是对立事件例7.(多选题)(2024·高一·河南安阳·期末)在12张卡片上分别写上数字1~12,从中随机抽出一张,记抽出的卡片上的数字为,甲表示事件“为偶数”,乙表示事件“为质数”,丙表示事件“能被3整除”,丁表示事件“”,则(    )A.甲与丙为互斥事件 B.乙与丁相互独立C.丙与丁相互独立 D.甲乙乙丙)例8.(多选题)(2024·高一·辽宁大连·期末)按先后顺序抛两枚均匀的硬币,观察正反面出现的情况,记事件A:第一次出现正面,事件:第二次出现反面,事件:两次都出现正面,事件:至少出现一次反面,则(    )A.与对立 B.与互斥 C. D.例9.(多选题)(2024·高一·辽宁大连·期末)有5个标记数字1,2,3,4,5的小球,从中有放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是6”,丁表示事件“两次取出的球的数字之和是5”,则(    )A.甲与乙互斥 B.丙与丁互斥C.甲与丙相互独立 D.乙与丁相互独立经典题型二:古典概型例10.(2024·高一·全国·开学考试)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为;再由乙猜甲刚才所想的数字,记为,其中.(1)试列举出由样本点组成的样本空间,并指出样本空间所含样本点的个数;(2)若,则称甲、乙“心有灵犀”,求甲、乙二人“心有灵犀”的概率.例11.(2024·高一·宁夏石嘴山·阶段练习)某商场举行“庆元宵,猜谜语”的促销活动,抽奖规则如下:在一个不透明的盒子中装有若干个标号为1,2,3的空心小球,球内装有难度不同的谜语.每次随机抽取2个小球,答对一个小球中的谜语才能回答另一个小球中的谜语,答错则终止游戏.已知标号为1,2,3的小球个数比为1:2:1,且盒中2号球的个数为4.(1)求取到异号球的概率;(2)若甲抽到1号球和3号球,甲答对球中谜语的概率和对应奖金如表所示,请帮甲决策猜谜语的顺序(猜对谜语的概率相互独立)例12.(2024·高一·全国·课后作业)写出下列试验的样本空间:(1):连续抛掷一枚骰子2次,观察每次掷出的点数;(2):袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况;(3):连续射击一个目标直到命中为止,观察射击的总次数.例13.(2024·高二·四川绵阳·开学考试)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于和之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.  (1)求第七组的频率,并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,求.例14.(2024·高一·广西·开学考试)某环保小组共有5名成员,其中男成员有2人,现从这5人中随机选出3人去某社区进行环保宣传.(1)求所选的3人中恰有1名男成员的概率;(2)求所选的3人中至少有2名女成员的概率.例15.(2024·高一·辽宁朝阳·期末)2023年高考查分系统上线后,某中学为了解该校高三年级学生的数学成绩,从中抽取了100名该校学生的成绩作为样本进行统计(成绩均在分),按照,,,,,,,分组,并作出频率分布直方图,如图所示:(1)求频率分布直方图中的值,并估计该中学今年高考数学成绩的中位数;(2)该校高三数学组准备用分层抽样的方法从样本中数学成绩不低于120分的学生中抽取5名学生,再从这5名学生中随机抽取2名学生在新高三开学动员会上发言,求这2名学生中恰有1名成绩不低于130分的概率.例16.(2024·高一·河南·开学考试)比亚迪是我国乃至全世界新能源电动车的排头兵,某比亚迪新能源汽车销售部为了了解广大客户对新能源性能的需求,随机抽取200名用户进行了问卷调查,根据统计情况,将他们的年龄按,,,,分组,并绘制出了频率分布直方图如图所示.(1)估计样本数据中用户年龄的中位数;(2)销售部从年龄在,内的样本中用分层抽样的方法抽取8人,再从这8人中随机抽取2人进行电话回访,求这2人取自不同年龄区间的概率.例17.(2024·高一·河南驻马店·期末)2024年入冬以来,为了减少甲流对师生身体健康的影响,某学校规定师生进出学校需佩戴口罩,现将该学校1000位师生一周的口罩使用数量统计如下表所示,其中每周的口罩使用数量在6只以上(包含6只)的有700人.(1)求的值,根据表中数据,完善上面的频率分布直方图(不要求写出过程,画图即可);(2)根据频率分布直方图估计该学校师生一周口罩使用数量的分位数和平均数(每组数据用每组中间值代替);(3)按分层抽样的方法在前三组中抽取一个容量为6的样本,记第一组抽取的2人为.第二组抽取的1人为,第三组抽取的3人为,从这6人中随机抽取两人检查其健康状况记为事件,请列出事件的样本空间,并求这两人恰好来自同一组的概率.例18.(2024·高一·陕西咸阳·阶段练习)习近平总书记对制止餐饮浪费行为作出重要指示,要求进一步加强宣传教育,切实培养节约习惯,在全社:会营造浪费可耻、节约光荣的氛围.为贯彻总书记指示,某学校食堂从学生中招募志愿者,协助食堂宣传节约粮食的相关活动.现有高一120人、高二80人,高三40人报名参加志愿活动.根据活动安排,拟按年级采用分层抽样的方法,从已报名的志愿者中抽取12名志愿者,参加为期20天的第一期志愿活动.(1)第一期志愿活动需从高一、高二、高三报名的学生中各抽取多少人?(2)现在要从第一期志愿者中的高二、高三学生中抽取2人粘贴宣传标语,求抽取的两人都是高二学生的概率经典题型三:相互独立事件概率的计算例19.(2024·高二·黑龙江齐齐哈尔·期末)《中华人民共和国爱国主义教育法》已由中华人民共和国第十四届全国人民代表大会常务委员会第六次会议于2023年10月24日通过,现予公布,自2024年1月1日起施行.甲,乙两同学组成“星队”参加黑龙江省“爱国主义教育法”知识竞赛.现有A,B两类问题,竞赛规则如下:①竞赛开始时,每个同学先从A类问题中随机抽取一个问题进行回答,答错的同学本轮竞赛结束;答对的同学再从B类问题中随机抽取一个问题进行回答,无论答对与否,本轮竞赛结束.②若在本轮竞赛中“星队”同学合计答对问题的个数不少于3个,则“星队”可进入决赛.已知甲同学能答对A类中问题的概率为,能答对类中问题的概率为.乙同学能答对A类中问题的概率为,能答对类中问题的概率为.(1)设“甲同学答对0个,1个,2个问题”分别记为事件,求事件的概率;(2)求甲乙两同学组成“星队”能进入决赛的概率.例20.(2024·高一·辽宁大连·期末)在某游戏中,小明遇到了如图的开关阵列,每个开关只有开和关两个状态,摁下某个开关会导致自身及相邻位置的开关状态发生变化.例如摁下会导致发生状态变化.开始时所有开关均关闭.(1)如果随机摁下一个开关,求最终状态为“打开”的的开关数目为4的概率.(2)如果从上两排六个开关中随机选择并摁下两个不同的开关,求摁下第一排和第二排各一个开关的概率.(3)如果依次按下两个开关,求最终状态为“打开”的开关数目为4的概率.例21.(2024·高二·山东淄博·期中)甲、乙两位同学进行跳绳比赛,比赛规则如下:进行两轮跳绳比赛,每人每轮比赛在规定时间内跳绳200次及以上得1分,跳绳不够200次得0分,两轮结束总得分高的为跳绳王,得分相同则进行加赛直至有一方胜出为止.根据以往成绩分析,已知甲在规定时间内跳绳200次及以上的概率为,乙在规定时间内跳绳200次及以上的概率为,且每轮比赛中甲、乙两人跳绳的成绩互不影响.(1)求两轮比赛结束乙得分为1分的概率;(2)求不进行加赛甲就获得跳绳王的概率.例22.(2024·高二·四川成都·期中)抛掷一枚均匀的骰子次,将第次掷出的点数记为,第次掷出的点数记为.(1)求的概率;(2)记事件为“”,事件为“”,若且事件和事件为相互独立事件,求的值.例23.(2024·高二·辽宁·学业考试)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为,,,且各轮问题能否回答正确互不影响.求:(1)该选手进入第三轮考核才被淘汰的概率;(2)该选手至多进入第二轮考核的概率.例24.(2024·高二·湖北鄂州·期中)一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让学生的思维得以拓展,不受固定思维模式的束缚.学生多角度、多方位地去思考解题的方案,让解题增添了新颖性和趣味性,并在解题中解放了解题思维模式,使得枯燥的数学解题更加丰富而多彩.假设某题共存在4种常规解法,已知小红使用解法一、二、三、四答对的概率分别为,且各种方法能否答对互不影响,小红使用四种解法全部答对的概率为.(1)求的值;(2)求小红不能正确解答本题的概率;(3)求小红使用四种解法解题,其中有三种解法答对的概率.例25.(2024·高二·上海虹口·期中)在高中学生军训表演中,学生甲的命中率为,学生乙的命中率为,甲、乙两人的射击互不影响,求:(1)甲、乙同时射中目标的概率?(2)甲、乙中至少有一人击中目标的概率?甲、乙两人的射击互不影响,则甲、乙同时射中目标的概率为.(2)记事件甲、乙中至少有一人击中目标,则事件甲、乙两人都没有击中,所以,.例26.(2024·高二·宁夏固原·期中)为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,;甲、乙两人在每轮比赛中是否胜出互不影响.(1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大?(2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.例27.(2024·高二·广东清远·阶段练习)作为世界乒坛本赛季收官战,首届世界乒乓球职业大联盟世界杯总决赛年月日在新加坡结束男女单打决赛的较量,国乒包揽双冠成为最大赢家.我市男子乒乓球队为备战下届市运会,在某训练基地进行封闭式训练,甲、乙两位队员进行对抗赛,每局依次轮流发球,连续赢个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为,乙发球甲赢的概率为,不同球的结果互不影响,已知某局甲先发球.(1)求该局打个球甲赢的概率;(2)求该局打个球结束的概率.经典题型四:概率综合问题例28.(2024·高一·湖南长沙·期末)某地区为了解市民的心理健康状况,随机抽取了位市民进行心理健康问卷调查,将所得评分百分制按国家制定的心理测评评价标准整理,得到频率分布直方图.已知调查评分在中的市民有200人.心理测评评价标准(1)求的值及频率分布直方图中的值;(2)该地区主管部门设定预案:若市民心理健康指数的平均值不低于0.75,则只管发放心理指导资料,否则需要举办心理健康大讲堂.根据调查数据,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组的每个数据用该组区间的中点值代替,心理健康指数调查评分)(3)在抽取的心理等级为的市民中,按照调查评分的分组,分为2层,通过分层随机抽样抽取3人进行心理疏导.据以往数据统计,经心理疏导后,调查评分在的市民的心理等级转为的概率为,调查评分在的市民的心理等级转为的概率为,假设经心理疏导后的等级转化情况相互独立,求在抽取的3人中,经心理疏导后恰有一人的心理等级转为的概率.例29.(2024·高一·福建泉州·期中)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从两地区一年的数据中随机抽取了相同20天的观测数据,得到两地区的空气质量指数如下图所示:  根据空气质量指数,将空气质量状况分为以下三个等级:(1)试估计地区当年(365天)的空气质量状况“优良”的天数;(2)假设两地区空气质量状况相互独立,记事件:“地区空气质量等级优于地区空气质量等级”.根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件的概率;(3)若从空气质量角度选择生活地区居住,你建议选择两地区哪个地区.(只需写出结论)例30.(2024·高一·福建厦门·期末)为了建设书香校园,营造良好的读书氛围,学校开展“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:(1)分别求出游戏一,游戏二的获胜概率;(2)一名同学先玩了游戏一,试问为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.例31.(2024·高一·河南平顶山·期末)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若,求这两人中奖的概率;(2)若,求第一次由甲摸奖,最后一次也是甲摸奖的概率.例32.(2024·高一·福建厦门·期末)某学校组织校园安全知识竞赛.在初赛中有两轮答题,第一轮从A类的5个问题中任选两题作答,若两题都答对,则得40分,否则得0分;第二轮从B类的5个问题中任选两题作答,每答对1题得30分,答错得0分若两轮总积分不低于60分则晋级复赛.小芳和小明同时参赛,已知小芳每个问题答对的概率都为0.5.在A类的5个问题中,小明只能答对4个问题;在B类的5个问题中,小明每个问题答对的概率都为0.4.他们回答任一问题正确与否互不影响.(1)求小明在第一轮得40分的概率;(2)以晋级复赛的概率大小为依据,小芳和小明谁更容易晋级复赛?例33.(2024·高三·河南·阶段练习)甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下面的框图所示,其中编号为的方框表示第场比赛,方框中是进行该场比赛的两名棋手,第场比赛的胜者称为“胜者”,负者称为“负者”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为 ,而乙、丙、丁相互之间胜负的可能性相同.(Ⅰ)求甲获得冠军的概率;(Ⅱ)求乙进入决赛,且乙与其决赛对手是第二次相遇的概率.例34.(2024·高一·全国·课后作业)袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球2次即终止的概率;(2)求甲取到白球的概率.模块三:数学思想方法分类与整合思想例35.(2024·全国·模拟预测)某口罩生产厂生产了一批N95型口罩,已知每只口罩检验合格的概率为0.8,对不合格的口罩进行一次技术精加工,加工后每只口罩检验合格的概率为0.3,不合格的作为废品处理.现从这批N95型口罩中任选一只,则得到合格口罩的概率为(    )A.0.78 B.0.86 C.0.88 D.0.90例36.(2024·云南德宏·高三统考期末)高三某位同学准备参加物理、化学、政治科目的等级考.已知这位同学在物理、化学、政治科目考试中达的概率分别为、、,假定这三门科目考试成绩的结果互不影响,那么这位同学恰好得个的概率是_______.例37.(2024·江西上饶·高三校联考阶段练习)排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为,则最后甲队获胜的概率是________.例38.(2024·全国·高三专题练习)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.例39.(2024·全国·高二期中)甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下面的框图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i“,负者称为“负者i“,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.(1)求甲获得冠军的概率;(2)求乙进入决赛,且乙与其决赛对手是第二次相遇的概率.例40.(2024·陕西延安·高二校考期末)在某次1500米体能测试中,甲,乙,丙三人各自通过测试的概率分别为,,,求:(1)3人都通过体能测试的概率;(2)只有2人通过体能测试的概率;(3)至少有1人通过体能测试的概率.等价转换思想例41.(2024·高一单元测试)社会实践课上,老师让甲、乙两同学独立地完成某项任务,已知两人能完成该项任务的概率分别为,,则此项任务被甲、乙两人完成的概率为(    )A. B. C. D.例42.(多选题)(2024·高一课时练习)(多选)给出关于满足的非空集合A,B的四个命题,其中正确的命题是(    )A.若任取,则是必然事件B.若任取,则是不可能事件C.若任取,则是随机事件D.若任取,则是必然事件例43.(2024·江苏泰州·高二统考期中)某个部件由三个元件按下图方式连接而成,元件1正常工作且元件2或元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:)均服从正态分布,且各个部件能否正常工作相互独立,那么该部件的使用寿命超过的概率为______.例44.(2024·湖南长沙·高二长沙麓山国际实验学校校考开学考试)为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,.甲、乙两人在每轮比赛中是否胜出互不影响.(1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大?(2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.例45.(2024·辽宁朝阳·高一建平县实验中学校考期中)已知甲、乙两人下象棋,其中和棋的概率为,乙获胜的概率为.(1)求甲获胜的概率;(2)求甲不输的概率.函数与方程的思想例46.(2024·高一课时练习)设甲、乙两个袋子中装有若干个均匀的白球和红球,且甲、乙两个袋中的球数比为1:3.已知从甲袋中摸到红球的概率为,而将甲、乙两个袋子中的球装在一起后,从中摸到红球的概率为,则从乙袋中摸到红球的概率为(    )A. B. C. D.例47.(2024·江苏南通·高一启东中学校考期中)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球概率为,得到黑球或黄球概率是,得到黄球或绿球概率是,则任取一球得到黄球的概率为__________.例48.(2024·河北保定·高二河北省唐县第一中学校考期中)在某社区举办的《“环保我参与”有奖问答比赛》活动中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是,乙、丙两个家庭都回答正确的概率是.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中恰有2个家庭回答正确这道题的概率.例49.(2024·山东泰安·高一新泰市第一中学校考期中)在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由. 球号1号球3号球答对概率0.80.5奖金100500口罩使用数量频率 调查评分心理等级A空气质量指数空气质量状况优良轻中度污染重度污染游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球3个,白球2个(红球编号为“1,2,3”,白球编号为“4,5”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个白球获胜编号之和为获胜
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高一数学下册(苏教版)-第15章 概率章末题型归纳总结(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map