初中数学2. 二次函数y=ax2+bx+c的图象与性质优秀ppt课件
展开问题:说说二次函数y=ax2的图象的特征.
(1)抛物线y=ax2的对称轴是 ,顶点是 .
(2)当a>0时,抛物线的开口 ,顶点是抛物线的 ;
当a<0时,抛物线的开口 ,顶点是抛物线的 ;
|a|越大,抛物线的开口 .
那么y=ax2+c 呢?
二次函数y = ax2 +c的图象的画法
观察所画图象,有什么异同? 它们的开口方向、对称轴、顶点坐标是什么?
抛物线 :
开口_____,对称轴是_____,顶点坐标_______.
抛物线 +1 :
当自变量 x 取同一数值时,这两个函数的函数值之间有什么关系? 反映在图象上,相应的两个点之间的位置又有什么关系?
把抛物线 向____平移___个单位就得到抛物线 .
你能由函数 的性质,得到函数 的一些性质吗?
当 x____时,函数值 y 随 x 的增大而减小;当 x____时,函数值 y 随 x的增大而增大;当 x____时,函数取得最____值,y =_____.
当x<0时,y随x增大而减小;当x>0时,y随x增大而增大.
先在同一平面直角坐标系中画出函数 与函数 的图象,再作比较,指出它们的联系与区别.
函数 的图象可以看成是由函数 的图象经过怎样的平移得到的?试说出它的开口方向、对称轴和顶点坐标,并讨论这个函数的性质.
在同一平面直角坐标系中,函数 的图象与函数 的图象有什么关系?
你能说出函数 的图象的开口方向、对称轴和顶点坐标吗?这个函数有哪些性质?
当x<0时,y 随 x 增大而增大;当x>0时,y 随 x 增大而减小.
1.已知函数 和 .
(1)在同一个平面直角坐标系中画出它们的图象;
【选自教材P10 练习 第1题】
(2)说出各个图象的开口方向、对称轴和顶点坐标.
的顶点坐标是(0,0)
的顶点坐标是(0,-2)
【选自教材P10 练习 第2题】
2. 试说明:通过怎样的平移,可以由抛物线 得到抛物线 ?如果要得到抛物线 ,应将抛物线 作怎样的平移?试说出函数 的图象的开口方向、对称轴和顶点坐标.
函数 的图象开口向下,对称轴是 y 轴、顶点坐标是(0,4).
【选自教材P11 练习 第3题】
3. 试说出函数 y=ax2(a、k是常数,a≠0)的图象的开口方向、 对称轴和顶点坐标,并填写下表:
华师大版九年级下册26.1 二次函数作业ppt课件: 这是一份华师大版九年级下册<a href="/sx/tb_c16026_t3/?tag_id=26" target="_blank">26.1 二次函数作业ppt课件</a>,共19页。PPT课件主要包含了0-4,y1<y2,x=-2或x=2,-2<x<0或x>2等内容,欢迎下载使用。
初中数学华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质优质ppt课件: 这是一份初中数学华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质优质ppt课件,共19页。PPT课件主要包含了y轴直线x0,直线x2,直线x-2,直线xh等内容,欢迎下载使用。
初中数学华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质一等奖课件ppt: 这是一份初中数学华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质一等奖课件ppt,共18页。PPT课件主要包含了开口方向,对称轴,x-2,所以函数即为,描点连线,开口向下,顶点坐标是20,yax2+bx+c,二次函数的顶点式,二次函数的一般表达式等内容,欢迎下载使用。