所属成套资源:(专项练习)-2022-2023学年八年级数学上册专项讲练(人教版)
- 八年级数学上册专题12.33 作辅助线证明三角形全等-倍长中线(巩固篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题12.34 作辅助线证明三角形全等-倍长中线(培优篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题12.36 作辅助线证明三角形全等-截长补短(基础篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题12.37 作辅助线证明三角形全等-截长补短(培优篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题12.1 全等三角形(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
八年级数学上册专题12.35 作辅助线证明三角形全等-截长补短(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(人教版)
展开
这是一份八年级数学上册专题12.35 作辅助线证明三角形全等-截长补短(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(人教版),共20页。
专题12.35 作辅助线证明三角形全等-截长补短(知识讲解)“截长补短”是处理线段间数量关系的一种重要的解题方法.当题目中出现三条线段间的和差关系时(如a=b+c),常考虑用此法解决.所谓"截",就是将最长的线段a截成两段,使其中一段等于较短的一条线段b,再利用全等三角形或者等腰三角形的知识证另一段等于线段c;所谓"补",就是将较短的线段6延长,使延长的线段长度为c,相当于将线段b,c拼成一条线段,再证明此线段的长等于a.用截长补短法解决问题的关键,是用"截"或"补"的手段去构造线段.1.如图,,、分别平分、,与交于点O.(1)求的度数;(2)说明的理由.【答案】(1)120°;(2)见分析【分析】(1)根据角平分线的定义可得∠OAB+∠OBA=60°,从而得到∠AOB;(2)在AB上截取AE=AC,证明△AOC≌△AOE,得到∠C=∠AEO,再证明∠C+∠D=180°,从而推出∠BEO=∠D,证明△OBE≌△OBD,可得BD=BE,即可证明AC+BD= AB.解:(1)∵AD,BC分别平分∠CAB和∠ABD,∠CAB+∠ABD=120°,∴∠OAB+∠OBA=60°,∴∠AOB=180°-60°=120°;(2)在AB上截取AE=AC,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=AB.【点拨】本题考查了角平分线的定义,三角形内角和,全等三角形的判定和性质,解题的关键是截取AE=AC,利用全等三角形的性质证明结论.【变式1】如图,四边形ABCD中,,,,对角线BD平分交AC于点P.CE是的角平分线,交BD于点O.(1)请求出的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由;【答案】(1);(2)BE+CP=BC,理由见分析.【分析】(1)先证得为等边三角形,再利用平行线的性质可求得结论;(2)由BP、CE是△ABC的两条角平分线,结合BE=BM,依据“SAS”即可证得△BEO≌△BMO;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60,求出∠BOM,即可判断出∠COM=∠COP,即可判断出△OCM≌△OCP,即可得出结论;解:(1)∵,,∴为等边三角形,∴∠ACD=,∵,∴∠BAC=∠ACD=;(2)BE+CP=BC,理由如下:在BC上取一点M,使BM=BE,连接OM,如图所示:∵BP、CE是△ABC的两条角平分线, ∴∠OBE=∠OBM=∠ABC,在△BEO和△BMO中,,∴△BEO△BMO(SAS),∴∠BOE=∠BOM=60,∵BP、CE是△ABC的两条角平分线,∴∠OBC+∠OCB=在△ABC中,∠BAC+∠ABC+∠ACB=180,∵∠BAC =60,∴∠ABC+∠ACB=180-∠A=180-60=120,∴∠BOC=180-(∠OBC+∠OCB)=180=180-×120=120,∴∠BOE=60,∴∠COP=∠BOE=60∵△BEO≌△BMO,∴∠BOE=∠BOM=60,∴∠COM=∠BOC-∠BOM=120-60=60,∴∠COM=∠COP=60,∵CE是∠ACB的平分线,∴∠OCM=∠OCP,在△OCM和△OCP中,∴△OCM≌△OCP(ASA),∴CM=CP,∴BC=CM+BM=CP+BE,∴BE+CP=BC.【点拨】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD是解题的关键.【变式2】在中,为的角平分线. 图1 图2 (1)如图1,,,点在边上,,请直接写出图中所有与相等的线段.(2)如图2,,如果,求证:.【答案】(1)=;(2)证明见分析.【分析】(1)根据角平分线的性质结合已知条件可证得,再证得,从而证得=;(2)在AB上取点E,使得AE=AC,则可证得△AED≌△ACD,可得∠AED=∠C=2∠B,ED=CD,可证得△BDE为等腰三角形,所以有BE=DE=CD,可得结论.解:(1)∵为的角平分线,∴∠EAD=∠CAD,∵,在△AED和△ACD中,,∴,∴,,∵,∴,∵,∴,∴,∴=;(2)在AB上取点E,使得AE=AC,在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠AED=∠C, ED=CD,∵∠C=2∠B,又∠AED=∠B+∠BDE=2∠B,∴∠B=∠BDE,∴BE=DE,∴AB=AE+BE=AC+DE=AC+CD.【点拨】本题主要考查三角形全等的判定和性质,角平分线的性质,解题的关键是构造全等三角形,在证明两条线段的和等于一条线段时,通常是截取线段,难度不大.2.(1)问题背景:如图 1,在四边形 ABCD 中,AB = AD,∠BAD= 120°,∠B =∠ADC= 90°,E,F 分别是 BC, CD 上的点,且∠EAF = 60°,探究图中线段BE,EF,FD之间的数量关系.小明同学探究此问题的方法是延长FD到点G,使DG=BE, 连结AG,先证明ΔΔADG,再证明ΔΔAGF,可得出结论,他的结论应是 .(2)探索延伸:如图 2,在四边形ABCD 中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,∠EAF=∠BAD,上述结论是否依然成立?并说明理由.【答案】(1)EF=BE+DF;(2)成立,见分析【分析】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;解:(1)EF=BE+DF,证明如下:在△ABE和△ADG中, 在△AEF和△AGF中,故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图②,在△ABE和△ADG中∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;【点拨】本题考查了全等三角形的判定和性质及“半角模型”,熟练掌握全等三角形的判定和性质及“半角模型”构造全等的方法是解题的关键.【变式1】如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD. 【答案】证明见分析.【分析】延长EB到G,使BG=DF,连接AG.先说明△ABG≌△ADF,然后利用全等三角形的性质和已知条件证得△AEG≌△AEF,最后再运用全等三角形的性质和线段的和差即可解答.解:延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2. ∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD【点拨】本题考查了全等三角形的判定与性质,做出辅助线构造全等三角形是解答本题的关键.【变式2】已知:如图所示,在中,为中线,交分别于,如果,求证: .【答案】详见分析【分析】根据点D是BC的中点,延长AD到点G,得到,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF中的两个角相等,然后用等角对等边证明AE等于EF.解:延长ED至G,使,连结GC, ∵在中,为中线,∴BD=CD,在△ADC和△GDB中, ∴,,,,,.又,∴,∴.【点拨】本题考查全等三角形的判定与性质,解题的关键是通过作辅助线构建全等三角形.3.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系. 【答案】(1)见分析(2)一定成立(3)MN=NC﹣BM【分析】(1)根据等腰三角形的性质、三角形内角和定理得到∠PBC=∠=30°,进而得到∠PBM=∠PCN=90°,证明Rt△PBM≌Rt△PCN,得到∠BPM=∠CPN=30°,根据含30°角的直角三角形的性质证明结论;(2)延长AC至H,使CH=BM,连接PH,证明△PBM≌△PCH,得到PM=PH,∠BPM=∠CPH,再证明△MPN≌△HPN,得到MN=HN,等量代换得到答案;(3)在AC上截取CK=BM,连接PK,仿照(2)的方法得出结论.(1)解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=120°,BP=CP,∴∠PBC=∠PCB=×(180°﹣120°)=30°,∴∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,,∴Rt△PBM≌Rt△PCN(HL),∴∠BPM=∠CPN=30°,∵∠MPN=60°,PM=PN,∴△PMN为等边三角形,∴PM=PN=MN,在Rt△PBM中,∠BPM=30°,∴BM=PM,同理可得,CN=PN,∴BM+CN=MN.(2)解:一定成立,理由如下:延长AC至H,使CH=BM,连接PH,如图所示,由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,,∴△PBM≌△PCH(SAS),∴PM=PH,∠BPM=∠CPH,∵∠BPM+∠CPN=60°,∴∠CPN+∠CPH=60°,∴∠MPN=∠HPN,在△MPN和△HPN中,,∴△MPN≌△HPN(SAS),∴MN=HN=BM+CN,故答案为:一定成立.(3)解:在AC上截取CK=BM,连接PK,如图所示,在△PBM和△PCK中,,∴△PBM≌△PCK(SAS),∴PM=PK,∠BPM=∠CPK,∵∠BPM+∠BPN=60°,∴∠CPK+∠BPN=60°,∴∠KPN=60°,∴∠MPN=∠KPN,在△MPN和△KPN中,,∴△MPN≌△KPN(SAS),∴MN=KN,∵KN=NC﹣CK=NC﹣BM,∴MN=NC﹣BM.【点拨】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【变式1】如图,在四边形中,,点E、F分别在直线、上,且.(1)当点E、F分别在边、上时(如图1),请说明的理由.(2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由.【答案】(1)见分析(2)不成立,,见分析【分析】(1)延长EB至G,使BG=DF,连接AG,通过证明△ABG≌△ADF,△EAG≌△EAF可得GE=EF,进而可说明EF=BE+DF;(2)在BE上截取BM=DF,连接AM,通过证明△ABM≌△ADF,△AME≌△AFE可得ME=EF,进而可得EF=BE﹣FD.解:(1)EF=BE+DF,理由:延长EB至G,使BG=DF,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,∴∠ADC=∠ABG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAE+∠BAG=∠EAF,即∠EAG=∠EAF,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=EF,∴EF=BE+DF;(2)(1)中结论不成立,EF=BE﹣FD,在BE上截取BM=DF,连接AM,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ABC=∠ADF,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∵∠BAM+∠MAD=∠DAF+∠MAD,∴∠BAD=∠MAF,∵∠EAF=∠BAD,∴∠EAF=∠MAF,∴∠EAF=∠EAM,在△AME和△AFE中,,∴△AME≌△AFE(SAS),∴ME=EF,∴ME=BE﹣BM=BE﹣DF,∴EF=BE﹣FD.【点拨】本题主要考查全等三角形的判定与性质,正确作出辅助线证明相关三角形全等是解题的关键.【变式2】在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.【答案】(1)证明见分析;(2)2.5;(3)100°.【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中, ,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中, ,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【点拨】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.