|教案下载
终身会员
搜索
    上传资料 赚现金
    数学北师大版八年级上册 三角形的内角和定理第1课时教案
    立即下载
    加入资料篮
    数学北师大版八年级上册 三角形的内角和定理第1课时教案01
    数学北师大版八年级上册 三角形的内角和定理第1课时教案02
    数学北师大版八年级上册 三角形的内角和定理第1课时教案03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学北师大版八年级上册 三角形的内角和定理第1课时教案

    展开
    这是一份数学北师大版八年级上册 三角形的内角和定理第1课时教案,共7页。

    第七章 平行线的证明
    7. 5 三角形的内角和定理
    第 1 课时
    ◆ 教材分析

    本节是北师大版教材八年级上册第七章《平行线的证明》第五节的内容.通过上一节课的学习,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力.本节课旨在利用平行线的相关知识来证明三角形的内角和定理以及灵活运用这个定理解决相关问题,使学生突破原有的形象思维限制,引入几何证明中的重要方法——添加辅助线法,从而为下一节三角形外角的学习作好铺垫,同时也为以后继续学习几何证明打下良好的基础.因此,本节课的内容在教材编排上起着承上启下的重要作用.
    ◆ 教学目标


    1. 掌握三角形内角和定理的证明,灵活运用三角形内角和定理解决相关问题.
    2. 经历探索与证明的过程,培养学生探索、归纳的能力,一题多解的能力、转化知识并解决问题的能力,发展学生的推理能力.
    3. 初步体会思维的多向性,引导学生个性发展,使学生体验到解决问题的成就感,体会“合作双赢”的理念.
    ◆ 教学重难点



    【教学重点】
    探索三角形内角和定理的证明过程及其简单的应用.
    【教学难点】
    在三角形内角和定理的证明过程中正确添加辅助线.
    ◆ 课前准备



    教师准备课件,学生准备三角形纸片.
    ◆ 教学过程

    一、创设情境,引入新知
    开场白:同学们,今天我们来学习《三角形的内角和定理》.或许有同学会说:“老师,老掉牙了,地球人都知道!”没错,今天的内容确实很简单.但如果大家能在特别简单的知识中挖掘出更有价值的知识,那么你们将是最棒的!下面我们一起来进入今天的学习中来.
    活动内容:
    1. 旧知回顾、引入新课:
    问题1:你知道三角形的三个内角之间存在怎样的关系吗?(由于学生在以前学过这个知识点,所以很轻松地就可以答出.)
    问题2:你还记得这个结论的探索过程吗?
    设计意图:爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过提出问题,激发学生的学习热情.
    教学效果:学生能够很快进入学习状态,从心理上感知这节课的内容很简单,排除学生对几何证明的胆怯情绪.
    2. 动手操作、初步感知:(让学生分小组讨论:有什么办法可以验证得出这样的结论.学生会提出度量、撕拼或折叠的方法,然后让每个学生用准备好的三角形卡片将它的内角撕下,试着拼折看.通过小组合作交流最后师生共同归纳总结拼图方法.)
    实验1:将纸片三角形三顶角剪下,随意将它们拼凑在一起.(指名同学上台展演,其他同学互相展示;对于不同拼法要给于鼓励和肯定.等撕拼展示的同学完成后,还可让其他同学对照模型图抽象出几何图形,培养学生的理性思维意识和细心观察、善于发现问题之关键的能力.)
    撕拼验证三角形的内角和为180°的基本方法如下所示:

    由以上拼法可以让学生抽象出三种几何图形,使学生由形象思维过渡到理性思维(实际上是三种证法),为第二环节定理的证明做好充分准备:
    A
    B
    C
    D
    E





    实验2:将三角形的三个角折拼成一个平角.(小组交流后再展示,指定一位同学带领大家一块儿完成折叠过程.老师故意折错,使三个顶点不重合在一起,旨在让学生理解折叠的实质在于折痕与底边是平行的,进而为添加辅助线——作平行线埋下伏笔.)
    具体方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.(试用自己的语言说明这一结论的证明思路)

    (1) (2) (3) (4)
    设计意图:对比度量、撕纸、拼折等探索过程,让学生体会思维实验和符号化的理性作用.将自己的操作转化为符号语言对于学生来说还存在一定困难.但撕拼图和折拼示意图中的平行线为学生搭建了一个台阶,使学生想到把平行线的判定定理逆变成性质定理——作平行线构造同位角、内错角、同旁内角或平角来证明.
    教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用度量、撕纸、折叠的方法可以验证三角形内角和定理的原因——构造一个平角,为后面添加辅助线证明定理做好铺垫.
    活动内容:教是为学服务的,教的最终目的是为了不教,教给学生学习方法比单纯教给学生证明更有效.教师设问:从刚才的活动过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?(1)把你的想法与同伴交流.(2)各小组派代表展示说理方法.(3)请同学们让小明的想法变成现实.
    探究:刚才的撕纸、折纸都是把三角形的三个内角移到一起,如果不实际移动∠A和∠B,你有什么方法可达到同样的效果?根据前面的公理和定理,你能用自己的语言比较简捷的写出这一证明过程吗?与同伴交流,比比哪一个小组的方法好?
    已知:△ABC
    求证:∠A+∠B+∠C=180°
    (在证明中,当原来的条件不够时,可添加辅助线,从而构造新图形,形成新关系,找到已知与未知桥梁,把问题转化成自己已经会解的情况,这是解决问题常用的方法之一,辅助线通常画成虚线.)
    方法总结:
    A
    B
    C
    D
    E
    方法1:(作平行线,构造内错角、平角)
    过A点作DE∥BC
    ∵DE∥BC
    ∴∠DAB=∠B,∠EAC=∠C
    (两直线平行,内错角相等)
    ∵∠DAB+∠BAC+∠EAC=180°
    ∴∠BAC+∠B+∠C=180°(等量代换)
    方法2:(作平行线,构造内错角、同位角、平角)
    作BC的延长线CD,过点C作射线CE∥BA
    ∵CE∥BA
    ∴∠B=∠ECD(两直线平行,同位角相等)
    ∠A=∠ACE(两直线平行,内错角相等)
    ∵∠BCA+∠ACE+∠ECD=180°
    ∴∠A+∠B+∠ACB=180°(等量代换)
    3. 课本“想一想”中小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?
    添加辅助线思路:构造平角或平行线 (学生讲解或老师讲解,了解即可)
    方法3:(作平行线,构造内错角、同旁内角)
    过点A作AD∥BC(如图)
    ∵AD∥BC,
    ∴∠1=∠C,∠DAB+∠ABC=180°
    ∴∠BAC+∠B+∠C=∠DAB+∠ABC=180°
    方法4:(作平行线,构造同位角、内错角、平角)
    如图,在BC边上任取一点D,过D作DE∥AB
    交AC于E,作DF∥AC交AB于F
    ∵DE∥AB
    ∴∠1=∠B,∠2=∠4
    ∵DF∥AC
    ∴∠3=∠C,∠A=∠4
    ∴∠2=∠A
    又∵∠1+∠2+∠3=180°
    ∴∠A+∠B+∠C=180°
    方法5:(作平行线,构造内错角、同旁内角)
    如图,过点A任作一条射线AD,
    再作BE∥AD,CF∥AD
    ∵BE∥AD∥CF,
    ∴∠1=∠3,∠2=∠4,∠EBC+∠BCF=180°
    ∴∠BAC+∠ABC+∠ACB=∠EBC+∠BCF=180°
    设计意图:通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益;有意识地培养学生的说理能力、逻辑推理能力、语言表达能力以及一题多思、一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础.
    教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.
    三、运用新知
    活动内容:
    例题1:如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数?

    分析:要求∠ADB的度数,根据三角形内角和定理可知道∠B和∠BAD的度数,∠BAD的度数可以由∠BAC的度数得到,而∠BAC又可以由△ABC的内角和来得到.
    设计意图:通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想―――数形结合思想,灵活运用三角形内角和定理来解决问题,达到活用知识的目的.
    教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,但书写过程可能会不尽人意.
    四、巩固新知
    活动内容:
    1 .△ABC中,∠C=90°,∠A=30°,∠B=?
    2. ∠A=50°,∠B=∠C,则△ABC中∠B=?
    3. 三角形的三个内角中,只能有____个直角或____个钝角.
    4. 任何一个三角形中,至少有____个锐角;至多有____个锐角.
    5. 三角形中三角之比为1∶2∶3,则三个角各为多少度?
    6. 已知:△ABC中,∠C=∠B=2∠A.
    (a) 求∠B的度数;
    (b) 若BD是AC边上的高,求∠DBC的度数?
    设计意图:通过习题,巩固三角形内角和知识,培养学生思维的广阔性;通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,以及知道角度之比求角的度和需要学生数形结合解决第(6)小题等,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享学友的想法,培养学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延.教师能全面了解学生对三角形内角和定理内容是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
    教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,可能会在书写过程方面需要老师指导或提醒.
    五、归纳小结
    采用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了哪些知识?⑵你有什么收获?
    1. 证明三角形内角和定理有哪几种方法?(度量、撕拼、折叠、证明)
    2. 辅助线的作法技巧:添加辅助线的实质是通过平行线来移动角——构造平行线间的内错角、同位角、同旁内角,构造平角.
    3. 三角形内角和定理的简单应用.
    ◆ 教学反思


    略.



    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map