所属成套资源:中考数学压轴题
- 中考数学压轴题56 试卷 0 次下载
- 中考数学压轴题57 试卷 0 次下载
- 中考数学压轴题58 试卷 0 次下载
- 中考数学压轴题60 试卷 0 次下载
- 中考数学压轴题61 试卷 1 次下载
中考数学压轴题59
展开这是一份中考数学压轴题59,共9页。
2022—2023学年中考金榜预测卷A
1(3分)如图,在等边△ABC中,E是AC边的中点,P是△ABC的中线AD上的动点,且AB=6,则BP﹣PE的最大值是 3 .
【分析】连接PC,由△ABC是等边三角形,AD是中线,则AD⊥BC,所以PC=PB,在△PCE中,CP﹣PE<EC,即CP﹣PE<3,当P与A重合时,CP﹣PE的值最大为3,BP﹣PE的最大值是3.
【解答】解:如图,连接PC,
∵△ABC是等边三角形,AD是中线,
∴AD⊥BC,
∴PC=PB,
∵E是AC边的中点,AB=6,
∴EC=3,
在△PCE中,CP﹣PE<EC,
∴CP﹣PE<3,
∴当P与A重合时,CP﹣PE的值最大为3,
BP﹣PE的最大值是3.
故答案为:3.
【点评】本题考查了轴对称﹣最短路线问题,关键是根据三角形两边之差小于第三边得到CP﹣PE<EC.
2(10分)如图,直线yx+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒.以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.
(1)求点A,点B的坐标.
(2)用含t的代数式分别表示EF和AF的长.
(3)是否存在t的值,使△AGF是直角三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
【分析】(1)在直线yx+2中,分别令y=0和x=0,容易求得A、B两点坐标;
(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;
(3)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.
【解答】解:(1)在直线yx+2中,
令y=0,得:x+20,
解得:x=2,
令x=0,得:y=2,
∴A(2,0),B(0,2);
(2)由(1)可知OA=2,OB=2,
∴tan∠ABO,
∴∠ABO=30°,
∵运动时间为t秒,
∴BEt,
∵EF∥x轴,
∴在Rt△BEF中,EF=BE•tan∠ABOBE=t,BF=2EF=2t,
在Rt△ABO中,OA=2,OB=2,
∴AB=4,
∴AF=AB﹣BF=4﹣2t;
(3)存在.
∵EG∥x轴,
∴∠GFA=∠BAO=60°,
∵G点不能在抛物线的对称轴上,
∴∠FGA≠90°,
∴当△AGF为直角三角形时,则有∠FAG=90°,
又∠FGA=30°,
∴FG=2AF,
∵EF=t,EG=4,
∴FG=4﹣t,且AF=4﹣2t,
∴4﹣t=2(4﹣2t),
解得:t,
即当t的值为秒时,△AGF为直角三角形,
此时OE=OB﹣BE=2t=2,
∴E点坐标为(0,),
∵抛物线的顶点为A,
∴可设抛物线解析式为y=a(x﹣2)2,
把E点坐标代入可得:4a,
解得:a,
∴抛物线解析式为y(x﹣2)2,
即yx2x.
【点评】本题为二次函数的综合应用,主要考查了待定系数法,三角函数的定义,相似三角形的判定和性质,勾股定理,二次函数的对称性等知识点;在(2)中求得∠ABO=30°是解题的关键,在(3)判断出∠FAG为直角是解题的突破口,本题考查知识点较多,综合性较强,难度较大.
3(12分)如图,抛物线y=ax2﹣2x+c与x轴相交于A(﹣1,0),B(3,0)两点.
(1)求抛物线的函数表达式;
(2)点C在抛物线的对称轴上,且位于x轴的上方,将△ABC沿直线AC翻折得到△AB'C,点B'恰好落在抛物线的对称轴上.若点G为直线AC下方抛物线上的一点,求当△AB'G面积最大时点G的横坐标;
(3)点P是抛物线上位于对称轴右侧的一点,在抛物线的对称轴上存在一点Q使得△BPQ为等边三角形,请直接写出此时直线AP的函数表达式.
【分析】(1)根据待定系数法,把点A(﹣1,0),C(3,0)的坐标代入y=ax2﹣2x+c得到方程组求解即可;
(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),AH=2,由翻折得AB′=AB=4,求出B′H的长,可得点B′的坐标,设点G(t,r),且r=t2﹣2t﹣3,设直线AG解析式为y=kx+b,对称轴与AG交于点D,先求得AG解析式,再求得点D的坐标,将△AB'G面积表示成关于t的函数,利用二次函数的最值即可.
(3)由题意可知△B′BA为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,B′P.证出△BAQ≌△BB′P,可得AP垂直平分BB′,则C点在直线AP上,可求出直线AP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.
【解答】解:(1)由题意得:,
解得:,
∴抛物线的函数表达式为y=x2﹣2x﹣3.
(2)∵抛物线与x轴交于A(﹣1,0),B(3,0),
∴AB=4,抛物线的对称轴为直线x=1,
如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),AH=2,
由翻折得AB′=AB=4,
在Rt△AB′H中,由勾股定理,得B′H2,
∴点B′的坐标为(1,2),
设点G(t,r),且r=t2﹣2t﹣3,设直线AG解析式为y=kx+b,对称轴与AG交于点D,
则:,解得:,
∴直线AG解析式为yx,
∴D(1,),
∴B′D=2,
∴S△AB′G=S△AB′D+S△GB′D
•B′D•2•B′D•(t﹣1)
•B′D•(t+1)
(2)(t+1)
(t+1)﹣(t2﹣2t﹣3)
=﹣t2+(2)t+3,
∵﹣1<0,
∴当t时,S△AB′G的值最大,此时点G坐标为(,);
(3)存在.
取(2)中的点B′,B,连接BB′,
∵AB′=AB,∠B′AB=60°,
∴△ABB′为等边三角形.分类讨论如下:
①当点P在x轴的上方时,点Q在x轴上方,连接BQ,B′P.
∵△PBQ,△ABB′为等边三角形,
∴BQ=BP,AB=BB′,∠PBQ=∠B′BA=60°,
∴∠ABQ=∠B′BP,
∴△ABQ≌△B′BP(SAS),
∴AQ=B′P.
∵点Q在抛物线的对称轴上,
∴AQ=BQ,
∴B′P=BQ=BP,
又∵AB′=AB,
∴AP垂直平分BB′,
由翻折可知AC垂直平分BB′,
∴点C在直线AP上,
设直线AP的函数表达式为y=k1x+b1,
则,解得:,
∴直线AP的函数表达式为yx.
②当点P在x轴的下方时,点Q在x轴下方.
∵△PBQ,△ABB′为等边三角形,
∴BP=BQ,AB=BB′,∠BB′A=∠QBP=∠B′BA=60°.
∴∠ABP=∠B′BQ,
∴△ABP≌△B′BQ(SAS),
∴∠BAP=∠BB′Q,
∵AB′=BB′,B′H⊥AB,
∴∠BB′Q∠BB′A=30°,
∴∠BAP=30°,
设AP与y轴相交于点E,
在Rt△AOE中,OE=OA•tan∠BAP=OA•tan30°=1,
∴点E的坐标为(0,).
设直线AP的函数表达式为y=mx+n,
则,解得:,
∴直线AP的函数表达式为yx.
综上所述,直线AP的函数表达式为yx或yx.
【点评】本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数最值的应用,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度
相关试卷
这是一份中考数学压轴题57,共10页。试卷主要包含了中心对称.等内容,欢迎下载使用。
这是一份中考数学压轴题54,共10页。试卷主要包含了 已知二次函数,其中.等内容,欢迎下载使用。
这是一份中考数学压轴题52,共11页。