2023版考前三个月冲刺专题练 第18练 空间点、直线、平面之间的位置关系【无答案版】
展开第18练 空间点、直线、平面之间的位置关系
1.(2019·全国Ⅱ)设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
2.(多选)(2020·全国Ⅱ改编)设有下列四个命题,则下述命题是真命题的是( )
A.两两相交且不过同一点的三条直线必在同一平面内
B.过空间中任意三点有且仅有一个平面
C.若空间两条直线不相交,则这两条直线平行
D.若直线l⊂平面α,直线m⊥平面α,则m⊥l
3.(多选)(2021·新高考全国Ⅱ)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是( )
4.(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
5.(2022·全国乙卷)在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则( )
A.平面B1EF⊥平面BDD1
B.平面B1EF⊥平面A1BD
C.平面B1EF∥平面A1AC
D.平面B1EF∥平面A1C1D
6.(多选)(2021·新高考全国Ⅰ)在正三棱柱ABC-A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则( )
A.当λ=1时,△AB1P的周长为定值
B.当μ=1时,三棱锥P-A1BC的体积为定值
C.当λ=时,有且仅有一个点P,使得A1P⊥BP
D.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P
7.(2022·全国乙卷)如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.
(1)证明:平面BED⊥平面ACD;
(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
8.(2021·新高考全国Ⅰ)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.
(1)证明:OA⊥CD;
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
9.(2022·咸阳模拟)已知m,n是不重合的直线,α,β,γ是不重合的平面,下列说法正确的是( )
A.若α⊥γ,β⊥γ,则α∥β
B.若m⊥α,n⊥α,则m⊥n
C.若α∥β,γ∥β,则γ∥α
D.若α⊥β,m⊥β,则m∥α
10.(多选)(2022·重庆模拟)如图,已知正方体ABCD-A1B1C1D1,P是棱CC1的中点,以下说法正确的是( )
A.过点P有且只有一条直线与直线AB,A1D1都相交
B.过点P有且只有一条直线与直线AB,A1D1都平行
C.过点P有且只有一条直线与直线AB,A1D1都垂直
D.过点P有且只有一条直线与直线AB,A1D1所成角均为45°
11.(多选)(2022·怀仁模拟)将正方形ABCD沿对角线BD翻折,使平面ABD与平面BCD的夹角为90°,则下列四个结论中正确的是( )
A.AC⊥BD
B.△ACD是等边三角形
C.直线AB与平面BCD所成的角为
D.AB与CD所成的角为
12.(多选)(2022·重庆质检)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点M在线段BC1(不包含端点)上运动,则下列结论正确的是( )
A.正方体ABCD-A1B1C1D1外接球的表面积为48π
B.异面直线A1M与AD1所成角的取值范围是
C.直线A1M∥平面ACD1
D.三棱锥D1-AMC的体积随着点M的运动而变化
13.(2022·西安模拟)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面四边形BCC1B1内(不含边界)一点,若A1P∥平面AEF,则线段A1P长度的取值范围是________.
14.(2022·南昌模拟)如图,四棱锥P-ABCD的底面是边长为1的正方形,点E是棱PD上一点,PE=3ED,若=λ且满足BF∥平面ACE,则λ=________.
15.(2022·黄山检测)在矩形ABCD所在平面α的同一侧取两点E,F,使DE⊥α且AF⊥α,若AB=AF=3,AD=4,DE=1.
(1)求证:AD⊥BF;
(2)取BF的中点G,求证DF∥平面AGC;
(3)求多面体ABF-DCE的体积.
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
16.(2022·西宁模拟)如图,AB是圆O的直径,PA⊥圆O所在的平面,C为圆周上一点,D为线段PC的中点,∠CBA=30°,AB=2PA.
(1)证明:平面ABD⊥平面PBC;
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
(2)若G为AD的中点,AB=4,求点P到平面BCG的距离.
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
[考情分析] 高考必考内容,主要以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小,或者以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题.
一、空间直线、平面位置关系的判定
核心提炼
1.判断与空间位置关系有关的命题的方法:
借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.
2.两点注意:
(1)平面几何中的结论不能完全引用到立体几何中.
(2)当从正面入手较难时,可先假设结论成立,然后推出与题设或公认的结论相矛盾的命题,进而作出判断.
练后反馈
题目 | 2 | 3 | 4 | 10 |
|
|
|
|
|
正误 |
|
|
|
|
|
|
|
|
|
错题整理: |
二、空间平行、垂直关系
核心提炼
1.直线、平面平行的判定定理及其性质定理
(1)线面平行的判定定理:a⊄α,b⊂α,且a∥b⇒a∥α.
(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.
(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.
(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
2.直线、平面垂直的判定定理及其性质定理
(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.
(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.
(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.
(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
练后反馈
题目 | 1 | 5 | 9 | 14 | 15 |
|
|
|
|
正误 |
|
|
|
|
|
|
|
|
|
错题整理: |
三、空间直线、平面位置关系中的综合问题
核心提炼
1.处理空间点、直线、平面的综合问题,要认真审题,并仔细观察所给的图形,利用空间直线、平面平行与垂直的判定定理和性质定理求解.
2.解决与折叠有关的问题的关键是弄清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.
练后反馈
题目 | 6 | 7 | 8 | 11 | 12 | 13 | 16 |
|
|
正误 |
|
|
|
|
|
|
|
|
|
错题整理: |
1.[T3补偿](2022·北京模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是( )
2.[T4补偿](2022·湖南师大附中模拟)已知E,F,G,H分别是三棱锥A-BCD的棱AB,AD,CD,CB上的点(不是顶点),则下列说法正确的是( )
A.若直线EF,HG相交,则交点一定在直线BD上
B.若直线EF,HG相交,则交点一定在直线AC上
C.若直线EF,HG异面,则直线EF,HG中必有一条与直线BD平行
D.若直线EF,HG异面,则直线EF,HG与直线BD分别相交
3.[T5补偿](多选)(2022·安庆模拟)已知ABCD-A1B1C1D1为正方体,P,Q,R分别为棱AD,A1B1,CC1的中点,则下列结论正确的是( )
A.AB∥平面PQR B.AC∥平面PQR
C.BP⊥QR D.BD1⊥平面PQR
4.[T12补偿](多选)(2022·太原模拟)如图,正方体ABCD-A1B1C1D1的棱长为a,E是棱DD1上的动点,则下列说法不正确的是( )
A.当E为DD1的中点时,直线B1E∥平面A1BD
B.三棱锥C1-B1CE的体积为定值a3
C.当E为DD1的中点时,B1E⊥BD1
D.当E为DD1的中点时,直线B1E与平面CDD1C1所成的角正切值为
5.[T16补偿](2022·兰州模拟)如图1,在正方形ABCD中,DM=MA=1,CN=NB=1,将四边形CDMN沿MN折起到四边形PQMN的位置,使得∠QMA=60°(如图2).
(1)证明:平面MNPQ⊥平面ABPQ;
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
(2)若E,F分别为AM,BN的中点,求三棱锥F-QEB的体积.
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
2023版考前三个月冲刺专题练 第26练 直线与圆锥曲线的位置关系【无答案版】: 这是一份2023版考前三个月冲刺专题练 第26练 直线与圆锥曲线的位置关系【无答案版】,共6页。
2023版考前三个月冲刺专题练 第32练 分类讨论思想【无答案版】: 这是一份2023版考前三个月冲刺专题练 第32练 分类讨论思想【无答案版】,共6页。
2023版考前三个月冲刺专题练 第34练 客观题的解法【无答案版】: 这是一份2023版考前三个月冲刺专题练 第34练 客观题的解法【无答案版】,共5页。