![2023年中考数学三轮冲刺 解答题冲刺练习二(含答案)01](http://img-preview.51jiaoxi.com/2/3/14090803/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺 解答题冲刺练习二(含答案)02](http://img-preview.51jiaoxi.com/2/3/14090803/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺 解答题冲刺练习二(含答案)03](http://img-preview.51jiaoxi.com/2/3/14090803/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年中考数学三轮冲刺 解答题冲刺练习二(含答案)
展开2023年中考数学三轮冲刺 解答题冲刺练习二
1.解不等式组:.
2.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:
八年级抽取的学生的竞赛成绩:
4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.
七、八年级抽取的学生的竞赛成绩统计表
年级 | 七年级 | 八年级 |
平均数 | 7.4 | 7.4 |
中位数 | a | b |
众数 | 7 | c |
合格率 | 85% | 90% |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;
(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.
3.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5 600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也铺设这两种型号的地砖共60块,且采购地砖的费用不超过3 200元,那么彩色地砖最多能采购多少块?
4.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.
(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;
(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.
5.如图所示,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)①当AM为何值时,四边形AMDN是矩形?
②当AM为何值时,四边形AMDN是菱形?
6.如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?
(精确到米,参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)
7.如图,以O为圆心的弧BD的度数为60°,∠BOE=45°,DA⊥OB于点A,EB⊥OB于点B.
(1)求的值;
(2)若OE与弧BD交于点M,OC平分∠BOE,连接CM,说明:CM是⊙O的切线;
(3)在(2)的条件下,若BC=2,求tan∠BCO的值.
8.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.
0.答案
1.解:x≥1.
2.解:(1)由图表可得:a==7.5,b==8,c=8,
故答案为:7.5,8,8;
(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),
答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;
(3)∵八年级的合格率高于七年级的合格率,
∴八年级“国家安全法”知识竞赛的学生成绩更优异.
3.解:(1)设彩色地砖采购x块,则单色地砖采购(100-x)块.
根据题意,得80x+40(100-x)=5 600,解得x=40,
100-x=60块.
答:彩色地砖采购40块,单色地砖采购60块;
(2)设彩色地砖采购y块,则单色地砖采购(60-y)块,
80y+40(60-y)≤3 200,解得y≤20.
答:彩色地砖最多采购20块.
4.解:(1)将点A(1,0),点B(0,2),代入y=mx+b,
∴b=2,m=﹣2,∴y=﹣2x+2;
∵过点C作CD⊥x轴,
∵线段AB绕点A顺时针旋转90°得到线段AC,
∴△ABO≌△CAD(AAS),∴AD=AB=2,CD=OA=1,
∴C(3,1),∴k=3,∴y=;
(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+b=,
∴﹣2x2+bx﹣3=0,
当△=b2﹣24=0时,b=±2,此时点P到直线AB距离最短;
∴P(,);
5. (1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME.
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形.
(2)①当AM=1时,四边形AMDN是矩形.
理由如下:∵四边形ABCD是菱形,
∴AB=AD=2.
当AM=1=AD时,可得∠ADM=30°.
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形.
②当AM=2时,四边形AMDN是菱形.
理由如下:∵四边形ABCD是菱形,
∴AB=AD=2.
∵AM=2,∴AM=AD=2,
又∠DAM=60°,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形.
6.解:如图,过点C作经过点A的水平直线的垂线,垂足为点D,
CD交过点B的水平直线于点E,过点B作BF⊥AD于点F,则CD=330米,
∵∠CAD=45°∴∠ACD=45°∴AD=CD=330米,
设AF=4x,则BF=AF•tan37°≈4x•0.75=3x(米)FD=(330﹣4x)米,
由四边形BEDF是矩形可得:BE=FD=(330﹣4x)米,ED=BF=3x米,
∴CE=CD﹣ED=(330﹣3x)米,
在Rt△BCE中,CE=BE•tan67°,∴330﹣3x=(330﹣4x)×2.4,解得x=70,
∴CE=330﹣3×70=120(米),∴BC==≈130(米)
答:电缆BC长至少130米.
7.解:(1)∵EB⊥OB,∠BOE=45°,
∴∠E=∠EOB,
∴BE=BO,
在Rt△OAD中, =sin∠DOA=,
∴=,∴==;
(2)∵OC平分∠BOE,
∴∠BOC=∠MOC,
在△BOC和△MOC中,
,
∴△BOC≌△MOC,
∴∠OMC=∠OBC=90°,
∴CM是⊙O的切线;
(3)∵△BOC≌△MOC,
∴CM=CB=2,
∵∠E=∠EOB=45°,
∴CE=CM=2,
∴BE=2+2,
∴OB=2+2,
∴tan∠BCO=+1.
8.解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
∴,解得,
∴抛物线解析式为y=x2+x﹣4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为m2+m﹣4,
又∵A(﹣4,0),
∴AO=0﹣(﹣4)=4,
∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=﹣1时,S有最大值,最大值为S=9;
故答案为:S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
(3)∵点Q是直线y=﹣x上的动点,
∴设点Q的坐标为(a,﹣a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a, a2+a﹣4),
∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
又∵OB=0﹣(﹣4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,即|﹣a2﹣2a+4|=4,
①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=﹣4,﹣a=4,
所以点Q坐标为(﹣4,4),
②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,
所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,
使点P,Q,B,O为顶点的四边形是平行四边形.
中考数学三轮冲刺《圆》解答题冲刺练习10(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习10(含答案),共10页。试卷主要包含了解得等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习09(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习09(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习08(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习08(含答案),共10页。试卷主要包含了5,求FG的长.,6,等内容,欢迎下载使用。