中考数学三轮冲刺《圆》解答题冲刺练习01(含答案)
展开中考数学三轮冲刺《圆》解答题冲刺练习01
1.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:AC=DC.
2.已知:过⊙O外一点C作CE⊥直径AF,垂足为E,交弦AB于D,若CD=CB,则
(1)判断直线BC与⊙O的位置关系,并证明;
(2)E为OA中点,∠FAB=30°,AD=4,请直接写出图中阴影部分的面积.
3.如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求的度数.
(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
4.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的长.
5.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,延长BC到点F,连接AF,使∠ABC=2∠CAF.
(1)求证:AF是⊙O的切线;
(2)若AC=4,CE:EB=1:3,求CE的长.
6.如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.
(1)判断直线PF与AC的位置关系,并说明你的理由;
(2)当⊙O的半径为5,tan∠P= ,求AC的长.
7.如图,已知AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH·EA;
(3)若⊙O的半径为5,sin∠A=,求BH的长.
8.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)求证:DE2=DF·DA.
0.中考数学三轮冲刺《圆》解答题冲刺练习01(含答案)参考答案
一 、解答题
1. (1)证明:∵AB是⊙O的直径,
∴∠ACB=∠ACD=90°,
∵点F是ED的中点,
∴CF=EF=DF,
∴∠AEO=∠FEC=∠FCE,
∵OA=OC,
∴∠OCA=∠OAC,
∵OD⊥AB,
∴∠OAC+∠AEO=90°,
∴∠OCA+∠FCE=90°,即OC⊥FC,
∴CF与⊙O相切;
(2)解:∵OD⊥AB,AC⊥BD,
∴∠AOE=∠ACD=90°,
∵∠AEO=∠DEC,
∴∠OAE=∠CDE=22.5°,
∵AO=BO,
∴AD=BD,
∴∠ADO=∠BDO=22.5°,
∴∠ADB=45°,
∴∠CAD=∠ADC=45°,
∴AC=CD.
2.解:
(1)直线BC与⊙O相切,
证明:连接OB,
∵CD=CB,∴∠CBD=∠CDB,
∵CE⊥AF,∴∠A+∠ADE=90°,
∵∠ADE=∠CDB=∠CBD,∴∠A+∠CBD=90°,
∵OA=OB,∴∠OBA=∠A,∴∠OBA+∠CBD=90°,∴OB⊥CB,
∵OB是半径,∴直线BC与⊙O相切;
(2)Rt△AED中,∠A=30°,AD=4,∴ED==2,
由勾股定理得:AE=2,
∵E为OA中点,∴OA=OB=4,
设EC交⊙O于M,连接OM,交AB于G,
Rt△OEM中,∵OE=2,OM=4,
∴∠EMO=30°,∠EOM=60°,∴EM==6,
∵∠A=∠OBA=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠BOM=60°,
∵∠A=30°,∠AOM=60°,∴∠AGO=90°,∴OG=OA=2,AG=6,
∴AB=2AG=12,∴BD=AB﹣AD=12﹣4=8,
∵∠CDB=∠ADE=60°,CD=CB,
∴△CDB是等边三角形,
∴S阴影=S四边形OECB﹣S△OEM﹣S扇形OMB=S四边形OEDB+S△CDB﹣S△OEM﹣S扇形OMB,
=﹣AE•ED+﹣OE•EM﹣,
=﹣+16﹣﹣8π,
=12﹣2+16﹣6﹣8π=.
3.解:
(1)连接OB,
∵BC是圆的切线,∴OB⊥BC,
∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,
∴△AOB是等腰直角三角形,∴∠ABO=45°,
∴的度数为45°;
(2)连接OE,过点O作OH⊥EC于点H,设EH=t,
∵OH⊥EC,∴EF=2HE=2t,
∵四边形OABC是平行四边形,∴AB=CO=EF=2t,
∵△AOB是等腰直角三角形,∴OA=t,
则HO===t,
∵OC=2OH,
∴∠OCE=30°.
4. (1)证明:连接OD,
∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,
∵∠ACB=90°,∴∠A+∠B=90°,
∵OD=OB,∴∠B=∠BDO,
∴∠ADE=∠A.
(2)解:连接CD.
∵∠ADE=∠A,∴AE=DE,
∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,
∴ED=EC,∴AE=EC,
∵DE=5,∴AC=2DE=10,
在Rt△ADC中,DC=6,
设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,
∴x2+62=(x+8)2﹣102,解得x=,∴BC==.
5.解:
(1)证明:连接BD,如图1所示:
∵AB是⊙O的直径
∴∠ADB=90°,
∵BA=BC,
∴BD平分∠ABC,即∠ABC=2∠ABD
∵∠ABC=2∠CAF,
∴∠ABD=∠CAF,
∵∠ABD+∠CAB=90°,
∴∠CAF+∠CAB=90°,即BA⊥FA,
∴AF是⊙O的切线;
(2)解:连接AE,如图2所示:
∵AB是⊙O的直径∴∠AEB=90°,
即△AEB为直角三角形,
∵CE:EB=1:3,设CE长为x,
则EB长为3x,BC长为4x.则AB长为4x,
在Rt△AEB中由勾股定理可得 AE=,
在Rt△AEC中,AC=4,AE=,CE=x,
由勾股定理得:,
解得:,∵x>0∴,即CE长为.
6.解:(1)连接BC,交PF于H,则∠ACB=90°,∠ABC=∠ADC.
又∵∠BPF=∠ADC.
∴∠ABC=∠ADC=∠BPF
∵BP是⊙O的切线
∴∠PBC+∠ABC=90°
∴∠P+∠PBC=90°
∴∠PHB=90°
∴∠FHC=∠ACB=90°
∴PF∥AC;
(2)由(1)知:∠ABC=∠ADC=∠BPF
∴tan∠D=tan∠ABC=tan∠P=
设AC=x,BC=2x,则:AB2=AC2+BC2
∴102=x2+(2x)2 解得:x=2,
即AC=2
7.证明:(1)∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线;
(2)证明:连接AC,如图1所示:
∵OF⊥BC,
∴,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴,
∴CE2=EHEA;
(3)连接BE,如图2所示:∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为5,sin∠BAE=,
∴AB=10,BE=ABsin∠BAE=10×=6,
∴EA=8,
∵,
∴BE=CE=6,
∵CE2=EHEA,
∴EH=,
在Rt△BEH中,BH=.
8.证明:(1)如图,连接OD.
∵点E是△ABC的内心,
∴∠BAD=∠CAD.
∴=.∴OD⊥BC.
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC.
∴BC∥DM.∴OD⊥DM.
∴直线DM是⊙O的切线.
(2)如图,连接BE.
∵点E是△ABC的内心,
∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE.
∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD.
∴DB=DE.
∵∠DBF=∠DAB,∠BDF=∠ADB,
∴△DBF∽△DAB.
∴=,即DB2=DF·DA.
∴DE2=DF·DA.
中考数学三轮冲刺《圆》解答题冲刺练习14(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习13(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习13(含答案),共8页。试卷主要包含了5AC=8,等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习11(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。