|试卷下载
搜索
    上传资料 赚现金
    人教版数学八年级上册全等三角形全章复习与巩固(提高)知识讲解
    立即下载
    加入资料篮
    人教版数学八年级上册全等三角形全章复习与巩固(提高)知识讲解01
    人教版数学八年级上册全等三角形全章复习与巩固(提高)知识讲解02
    人教版数学八年级上册全等三角形全章复习与巩固(提高)知识讲解03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册12.1 全等三角形习题

    展开
    这是一份人教版八年级上册12.1 全等三角形习题,共12页。

    【学习目标】
    1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;
    2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;
    3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.
    【知识网络】
    【要点梳理】
    要点一、全等三角形的判定与性质
    要点二、全等三角形的证明思路
    要点三、角平分线的性质
    1.角的平分线的性质定理
    角的平分线上的点到这个角的两边的距离相等.
    2.角的平分线的判定定理
    角的内部到角的两边距离相等的点在角的平分线上.
    3.三角形的角平分线
    三角形角平分线交于一点,且到三边的距离相等.
    4.与角平分线有关的辅助线
    在角两边截取相等的线段,构造全等三角形;
    在角的平分线上取一点向角的两边作垂线段.
    要点四、全等三角形证明方法
    全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.
    1. 证明线段相等的方法:
    (1) 证明两条线段所在的两个三角形全等.
    (2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.
    (3) 等式性质.
    2. 证明角相等的方法:
    (1) 利用平行线的性质进行证明.
    (2) 证明两个角所在的两个三角形全等.
    (3) 利用角平分线的判定进行证明.
    (4) 同角(等角)的余角(补角)相等.
    (5) 对顶角相等.
    3. 证明两条线段的位置关系(平行、垂直)的方法:
    可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.
    4. 辅助线的添加:
    (1)作公共边可构造全等三角形;
    (2)倍长中线法;
    (3)作以角平分线为对称轴的翻折变换全等三角形;
    (4)利用截长(或补短)法作旋转变换的全等三角形.
    5. 证明三角形全等的思维方法:
    (1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.
    (2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.
    (3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.
    【典型例题】
    类型一、巧引辅助线构造全等三角形
    (1).倍长中线法
    1、已知,如图,△ABC中,D是BC中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.
    【思路点拨】因为D是BC的中点,按倍长中线法,倍长过中点的线段DF,使DG=DF,证明△EDG≌△EDF,△FDC≌△GDB,这样就把BE、CF与EF线段转化到了△BEG中,利用两边之和大于第三边可证.
    【答案与解析】BE+CF>EF;
    证明:延长FD到G,使DG=DF,连接BG、EG
    ∵D是BC中点
    ∴BD=CD
    又∵DE⊥DF
    在△EDG和△EDF中
    ∴△EDG≌△EDF(SAS)
    ∴EG=EF
    在△FDC与△GDB中
    ∴△FDC≌△GDB(SAS)
    ∴CF=BG
    ∵BG+BE>EG
    ∴BE+CF>EF
    【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).
    举一反三:
    【变式】已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.
    求证:CD=2CE.
    【答案】
    证明: 延长CE至F使EF=CE,连接BF.
    ∵ EC为中线,
    ∴ AE=BE.
    在△AEC与△BEF中,
    ∴ △AEC≌△BEF(SAS).
    ∴ AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)
    又∵ ∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.
    ∴ AC=AB,∠DBC=∠FBC.
    ∴ AB=BF.
    又∵ BC为△ADC的中线,
    ∴ AB=BD.即BF=BD.
    在△FCB与△DCB中,
    ∴ △FCB≌△DCB(SAS).
    ∴ CF=CD.即CD=2CE.
    (2).作以角平分线为对称轴的翻折变换构造全等三角形
    2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.
    【答案与解析】
    证明:在AB上截取AE=AC.
    在△AED与△ACD中,
    ∴ △AED≌△ACD(SAS).
    ∴ ED=CD.
    ∴ ∠AED=∠C(全等三角形对应边、角相等).
    又∵ ∠C=2∠B ∴∠AED=2∠B.
    由图可知:∠AED=∠B+∠EDB,
    ∴ 2∠B=∠B+∠EDB.
    ∴ ∠B=∠EDB.
    ∴ BE=ED.即BE=CD.
    ∴ AB=AE+BE=AC+CD(等量代换).
    【总结升华】本题图形简单,结论复杂,看似无从下手,结合图形发现AB>AC.故用截长补短法.在AB上截取AE=AC.这样AB就变成了AE+BE,而AE=AC.只需证BE=CD即可.从而把AB=AC+CD转化为证两线段相等的问题.
    举一反三:
    【变式】如图,AD是的角平分线,H,G分别在AC,AB上,且HD=BD.
    (1)求证:∠B与∠AHD互补;
    (2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.
    【答案】
    证明:(1)在AB上取一点M, 使得AM=AH, 连接DM.
    ∵ ∠CAD=∠BAD, AD=AD,
    ∴ △AHD≌△AMD.
    ∴ HD=MD, ∠AHD=∠AMD.
    ∵ HD=DB,
    ∴ DB= MD.
    ∴ ∠DMB=∠B.
    ∵ ∠AMD+∠DMB =180,
    ∴ ∠AHD+∠B=180.
    即 ∠B与∠AHD互补.
    (2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180.
    ∵ ∠B+2∠DGA =180,
    ∴ ∠AHD=2∠DGA.
    ∴ ∠AMD=2∠DGM.
    ∵ ∠AMD=∠DGM+∠GDM.
    ∴ 2∠DGM=∠DGM+∠GDM.
    ∴ ∠DGM=∠GDM.
    ∴ MD=MG.
    ∴ HD= MG.
    ∵ AG= AM+MG,
    ∴ AG= AH+HD.
    (3).利用截长(或补短)法作构造全等三角形
    3、(2020•新宾县模拟)如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.
    (1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;
    (2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;
    (3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.
    【思路点拨】(1)AB=AC,∠BAC=60°,证得△ABC是等边三角形,∠APB=∠ABC,得到∠APB=60°,又点P恰巧在∠ABC的平分线上,得到∠ABP=30°,得到直角三角形,利用直角三角形的性质解出结果.
    (2)在BP上截取PD,使PD=PA,连结AD,得到△ADP是等边三角形,再通过三角形全等证得结论.
    (3)以A为圆心,以AP的长为半径画弧交BP于D,连接AD,过点A作AF⊥BP交BP于F,得到等腰三角形,然后通过三角形全等证得结论.
    【答案与解析】
    解:(1)∵AB=AC,∠BAC=60°,
    ∴△ABC是等边三角形,∠APB=∠ABC,
    ∴∠APB=60°,
    又∵点P恰巧在∠ABC的平分线上,
    ∴∠ABP=30°,
    ∴∠PAB=90°,
    ∴BP=2AP,
    ∵AP=2,
    ∴BP=4;
    (2)结论:PA+PC=PB.
    证明:如图1,在BP上截取PD,使PD=PA,连结AD,
    ∵∠APB=60°,
    ∴△ADP是等边三角形,
    ∴∠DAP=60°,
    ∴∠1=∠2,PA=PD,
    在△ABD与△ACP中,

    ∴△ABD≌△ACP,
    ∴PC=BD,
    ∴PA+PC=PB;
    (3)结论:PA+PC=PB.
    证明:如图2,以A为圆心,以AP的长为半径画弧交BP于D,连接AD,过点A作AF⊥BP交BP于F,
    ∴AP=AD,
    ∵∠BAC=120°,
    ∴∠ABC=30°,
    ∴∠APB=30°,
    ∴∠DAP=120°,
    ∴∠1=∠2,
    在△ABD与△ACP中,

    ∴△ABD≌△ACP,
    ∴BD=PC,
    ∵AF⊥PD,
    ∴PF=AP,
    ∴PD=AP,
    ∴PA+PC=PB.
    【总结升华】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,等边三角形的判定和性质,截长补短作辅助线构造全等三角形是解题的关键.
    举一反三:
    【变式】如图,AD是△ABC的角平分线,AB>AC,求证:AB-AC>BD-DC
    【答案】
    证明:在AB上截取AE=AC,连结DE
    ∵AD是△ABC的角平分线,
    ∴∠BAD=∠CAD
    在△AED与△ACD中
    ∴△AED≌△ADC(SAS)
    ∴DE=DC
    在△BED中,BE>BD-DC
    即AB-AE>BD-DC
    ∴AB-AC>BD-DC
    (4).在角的平分线上取一点向角的两边作垂线段
    4、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.
    求证:AF=AD+CF.
    【思路点拨】四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.
    【答案与解析】
    证明: 作ME⊥AF于M,连接EF.
    ∵ 四边形ABCD为正方形,
    ∴ ∠C=∠D=∠EMA=90°.
    又∵ ∠DAE=∠FAE,
    ∴ AE为∠FAD的平分线,
    ∴ ME=DE.
    在Rt△AME与Rt△ADE中,
    ∴ Rt△AME≌Rt△ADE(HL).
    ∴ AD=AM(全等三角形对应边相等).
    又∵ E为CD中点,∴ DE=EC.
    ∴ ME=EC.
    在Rt△EMF与Rt△ECF中,
    ∴ Rt△EMF≌Rt△ECF(HL).
    ∴ MF=FC(全等三角形对应边相等).
    由图可知:AF=AM+MF,
    ∴ AF=AD+FC(等量代换).
    【总结升华】与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.
    5、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E, ,求证:BD是∠ABC的平分线.

    【答案与解析】
    证明:延长AE和BC,交于点F,
    ∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),
    ∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.
    在Rt△ACF和Rt△BCD中.

    所以Rt△ACF≌Rt△BCD(ASA).
    则AF=BD(全等三角形对应边相等).
    ∵AE=BD,∴AE=AF,
    即AE=EF.
    在Rt△BEA和Rt△BEF中,

    则Rt△BEA≌Rt△BEF(SAS).
    所以∠ABE=∠FBE(全等三角形对应角相等),
    即BD是∠ABC的平分线.
    【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.
    类型二、全等三角形动态型问题
    6、在△ABC中,∠ACB=90°,AC=BC,直线经过顶点C,过A,B两点分别作的垂线AE,BF,垂足分别为E,F.
    (1)如图1当直线不与底边AB相交时,求证:EF=AE+BF.
    (2)将直线绕点C顺时针旋转,使与底边AB相交于点D,请你探究直线在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.
    【答案与解析】
    证明:(1)∵AE⊥,BF⊥,∴∠AEC=∠CFB=90°,∠1+∠2=90°
    ∵∠ACB=90°,∴∠2+∠3=90°
    ∴∠1=∠3。
    ∵在△ACE和△CBF中,
    ∴△ACE≌△CBF(AAS)
    ∴AE=CF,CE=BF
    ∵EF=CE+CF,∴EF=AE+BF。
    (2)①EF=AE-BF,理由如下:
    ∵AE⊥,BF⊥,
    ∴∠AEC=∠CFB=90°,∠1+∠2=90°
    ∵∠ACB=90°,∴∠2+∠3=90°,∴∠1=∠3。
    ∵在△ACE和△CBF中
    ∴△ACE≌△CBF(AAS)
    ∴AE=CF,CE=BF
    ∵EF=CF-CE,∴EF=AE―BF。
    ②EF=AE―BF
    ③EF=BF―AE
    证明同①.
    【总结升华】解决动态几何问题时要善于抓住以下几点:
    变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;
    图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段
    之间、角之间的位置与数量关系是否还存在是解题的关键;
    几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,
    其结论有时变化,有时不发生变化.
    举一反三:
    【变式】(2020•临沂模拟)【问题情境】
    如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
    【探究展示】
    (1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
    (2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
    【拓展延伸】
    (3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.
    【答案】
    (1)证明:取AB的中点M,连结EM,如图1:
    ∵M是AB的中点,E是BC的中点,
    ∴在正方形ABCD中,AM=EC,
    ∵CF是∠DCG的平分线,
    ∴∠BCF=135°,
    ∴∠AME=∠ECF=135°,
    ∵∠MAE=∠CEF=45°,
    在△AME与△ECF中,

    ∴△AME≌△ECF(SAS),
    ∴∠BAE+∠EFC=∠FCG=∠DCF;
    (2)证明:取AB上的任意一点使得AM=EC,连结EM,如图2:
    ∵AE⊥EF,AB⊥BC,
    ∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,
    ∴∠MAE=∠CEF,
    ∵AM=EC,
    ∴在正方形ABCD中,BM=BE,
    ∴∠AME=∠ECF=135°,
    在△AME与△ECF中,

    ∴△AME≌△ECF(SAS),
    ∴∠BAE+∠EFC=∠FCG=∠DCF;
    (3)证明:取AB延长线上的一点M使得AM=CE,如图3:
    ∵AM=CE,AB⊥BC,
    ∴∠AME=45°,
    ∴∠ECF=AME=45°,
    ∵AD∥BE,
    ∴∠DAE=∠BEA,
    ∵MA⊥AD,AE⊥EF,
    ∴∠MAE=∠CEF,
    在△AME与△ECF中,

    ∴△AME≌△ECF(SAS),
    ∴AE=EF.一般三角形
    直角三角形
    判定
    边角边(SAS)
    角边角(ASA)
    角角边(AAS)
    边边边(SSS)
    两直角边对应相等
    一边一锐角对应相等
    斜边、直角边定理(HL)
    性质
    对应边相等,对应角相等
    (其他对应元素也相等,如对应边上的高相等)
    备注
    判定三角形全等必须有一组对应边相等
    相关试卷

    初中数学人教版八年级上册13.1.1 轴对称课时训练: 这是一份初中数学人教版八年级上册13.1.1 轴对称课时训练,共10页。

    初中数学人教版八年级上册12.1 全等三角形课后测评: 这是一份初中数学人教版八年级上册12.1 全等三角形课后测评,共12页。

    初中数学12.1 全等三角形测试题: 这是一份初中数学<a href="/sx/tb_c10243_t7/?tag_id=28" target="_blank">12.1 全等三角形测试题</a>,共10页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map