初中数学鲁教版 (五四制)九年级上册2 反比例函数的图像与性质学案及答案
展开反比例函数的图象和性质(2) 导学案
主备人: 审核人:
一、教学目标
1.使学生进一步理解和掌握反比例函数及其图象与性质
2.能灵活运用函数图象和性质解决一些较综合的问题
3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法
二、重点、难点
1.重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题
2.难点:学会从图象上分析、解决问题
3.难点的突破方法:
在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。[来源:Zxxk.Com]
三、课堂引入
复习上节课所学的内容
1.什么是反比例函数?
2.反比例函数的图象是什么?有什么性质?
四、例习题分析[来源:学科网]
例3.见教材P7
分析:反比例函数的图象位置及y随x的变化情况取决于常数k的符号,因此要先求常数k,而题中已知图象经过点A(2,6),即表明把A点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。
例4.见教材P7
例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数(k<0)图象上,则a、b、c的大小关系怎样?
分析:由k<0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且-1>-2,故b>a>0;又C在第四象限,则c<0,所以
b>a>0>c
说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。
此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。
例2. (补充)如图, 一次函数y=kx+b的图象与反比例函数的图象交于A(-2,1)、B(1,n)两点
(1)求反比例函数和一次函数的解析式
(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围[来源:学科网ZXXK]
分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。[来源:学,科,网]
五、随堂练习
1.若直线y=kx+b经过第一、二、四象限,则函数的图象在( )
(A)第一、三象限 (B)第二、四象限
(C)第三、四象限 (D)第一、二象限
2.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是( )
(A)y1>y2>y3 (B)y1>y3>y2
(C)y2>y1>y3 (D)y3>y1>y2
六、课后练习
1.已知反比例函数的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足≥2k-1,若k为整数,求反比例函数的解析式
2.已知一次函数的图像与反比例函数的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2 ,
求(1)一次函数的解析式;
(2)△AOB的面积
答案:
1.或或
2.(1)y=-x+2,(2)面积为6
[来源:学#科#网]
初中数学鲁教版 (五四制)九年级上册1 反比例函数学案及答案: 这是一份初中数学鲁教版 (五四制)九年级上册1 反比例函数学案及答案,共2页。学案主要包含了三象限内.等内容,欢迎下载使用。
鲁教版 (五四制)六年级上册7 有理数的乘法学案及答案: 这是一份鲁教版 (五四制)六年级上册7 有理数的乘法学案及答案,共2页。学案主要包含了基础知识回顾,请你探索一下,课堂小结等内容,欢迎下载使用。
鲁教版 (五四制)七年级上册2 图形的全等导学案: 这是一份鲁教版 (五四制)七年级上册2 图形的全等导学案,共2页。学案主要包含了学习目标,课前预习,课中实施,当堂达标,拓展延伸等内容,欢迎下载使用。