山西省保德县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开保德县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. 下列图形中,是轴对称图形的是( )
A. B.
C. D.
2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
3. 下列运算正确的是( )
A. a2•a3=a6 B. a5÷a3=a2
C. a2+a3=a5 D. (a2)3=a5
4. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
5. 若一个正多边形的一个内角为,则这个图形为正( )边形
A. 八 B. 九 C. 七 D. 十
6. 在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于y轴对称,则﹣a+b的值为( )
A. ﹣33 B. 33 C. ﹣7 D. 7
7. 下列说法正确的是( )
A. 代数式是分式 B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为 D. 分式是最简分式
8. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cm B. 16cm C. 19cm D. 22cm
9. 如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A. △是等腰三角形,
B. 折叠后∠ABE和∠CBD一定相等
C. 折叠后得到的图形是轴对称图形
D. △EBA和△EDC一定是全等三角形
10. 如图,在△ABC中,∠A∶∠B∶∠C=3∶5∶10,又△MNC≌△ABC,则∠BCM∶∠BCN等于( )
A. 1∶2 B. 1∶3 C. 2∶3 D. 1∶4
二.填空题(共5题,总计 15分)
11. 分解因式:5x4﹣5x2=________________.
12. 若点M(3,a)关于y轴的对称点是点N(b,2),则___________.
13. 若等腰三角形一内角为,则一腰上的高与另一腰的夹角度数为______.
14. 如图,在锐角△ABC中,∠BAC 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM MN有最小值时,_____________°.
15. 如图,在中,,,点在线段上运动(不与,重合),连接,作,与交于.在点的运动过程中,的度数为________时,的形状是等腰三角形.
三.解答题(共8题,总计75分)
16. (1)因式分解:;
(2)化简:.
17. 解分式方程:
(1)
(2)
18. 如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;
(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;
(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.
19. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
20. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
21. 如图,现有一块长为(4a+b)米,宽为(a+2b)米的长方形地块,规划将阴影部分进行绿化,中间预留部分是边长为a米的正方形.
(1)求绿化的面积S(用含a,b的代数式表示,并化简);
(2)若a=2,b=3,绿化成本为100元/平方米,则完成绿化共需要多少元?
22. 在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.
15.3分式方程 例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度 小明: 小亮: |
根据以上信息,解答下列问题:
(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;
(2)请你在两个方程中任选一个,解答老师的例题.
23. 如图,等边中,点在上,延长到,使,连,过点作与点.
(1)如图1,若点是中点,
求证:①;②.
(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;
(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论.
保德县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
2.【答案】:B
【解析】:A、a2•a3=a5,故本选项错误,不符合题意;
B、a5÷a3=a2,故本选项正确,符合题意;
C、a2和a3不是同类项,无法合并,故本选项错误,不符合题意;
D、(a2)3=a6,故本选项错误,不符合题意;
故选:B
4.【答案】:B
【解析】:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
【画龙点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
5.【答案】:D
【解析】:解:设所求正n边形边数为n, 则
解得
故答案为:D.
6.【答案】:D
【解析】:解:∵点P(﹣20,a)与点Q(b,13)关于y轴对称,
∴a=13,b=20,
则-a+b=-13+20=7.
故选:D.
7.【答案】:D
【解析】:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
8.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
9.【答案】:B
【解析】:∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
10.【答案】:D
【解析】:在△ABC中,∠A:∠B:∠C=3:5:10
设∠A=3x°,则∠ABC=5x°,∠ACB=10x°
3x+5x+10x=180
解得x=10
则∠A=30°,∠ABC=50°,∠ACB=100°
∴∠BCN=180°-100°=80°
又△MNC≌△ABC
∴∠ACB=∠MCN=100°
∴∠BCM=∠NCM-∠BCN=100°-80°=20°
∴∠BCM:∠BCN=20°:80°=1:4
故选D
二. 填空题
11.【答案】: 5x2(x+1)(x-1)
【解析】:5x4-5x2=5x2(x2-1)
=5x2(x+1)(x-1).
故答案为:5x2(x+1)(x-1).
12.【答案】:-1
【解析】:解:∵点M(3,a)关于y轴的对称点是点N(b,2),
∴b=-3,a=2,
∴a+b=-1,
∴(a+b)2021=(-1)20121=-1.
故答案为:-1.
13.【答案】:或
【解析】:解:①如图一,当底角为40°时,
∵∠BDC=90°,∠C=40°,
∴∠DBC=90°-40°=50°,
∴∠ABD=50°-40°=10°;
②如图二,当顶角为40°时,
∵∠A=40°,
∴∠C=∠ABC=70°,
在直角△DBC中,
∵∠BDC=90°,
∴∠ABD=90°-40°=50°.
故答案为:或
14.【答案】: 50
【解析】:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
∵AM=AM,
∴△AME≌△AMN,
∴ME=MN,
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
∴∠ABM=90°-∠BAC=90°-40°=50°;
故答案为:50.
15.【答案】: 或
【解析】:解:∵AB=AC,
∴∠B=∠C=40°,
①当AD=AE时,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此时不符合;
②当DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,
∵∠BAC=180°-40°-40°=100°,
∴∠BAD=100°-70°=30°;
∴∠BDA=180°-30°-40°=110°;
③当EA=ED时,∠ADE=∠DAE=40°,
∴∠BAD=100°-40°=60°,
∴∠BDA=180°-60°-40°=80°;
∴当△ADE是等腰三角形时,∠BDA的度数是110°或80°,
故答案为:110°或80°.
三.解答题
16【答案】:
(1);
(2)
【解析】:
解:(1)原式=
;
(2)原式=
.
17【答案】:
(1)
(2)无解
【解析】:
【小问1详解】
解:方程两边同乘以得,
解这个整式方程,得,
检验:将代入最简公式分母,
原分式方程的解为.
【小问2详解】
将方程两边同时乘以得:
,
解这个整式方程,得:,
将代入,
所以是增根,
所以原分式方程无解.
【画龙点睛】本题考查的是分式方程的求解,解题的关键是将分式方程转化为整式方程,易错点是漏乘不含未知数的项.
18【答案】:
(1)见解析;(2)见解析;(3)见解析.
【解析】:
解:(1)如图①所示,线段MN是所求作的线段,
(2)如图②所示,线段PQ是所求作的线段,
(3)如图③所示,是所求作的三角形,
19【答案】:
(1)见解析;(2).
【解析】:
解:(1)∵,
∴.
∵是边上的中线,
∴,
∴.
(2)∵,
∴,
∴.
∵,
∴.
20【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
21【答案】:
(1)(3a2+9ab+2b2)平方米;
(2)完成绿化共需要8400元.
【解析】:
【小问1详解】
解:S=(4a+b)(a+2b)-a2
=4a2+8ab+ab+2b2-a2
=(3a2+9ab+2b2)平方米;
小问2详解】
解:当a=2,b=3时,
S=3×22+9×2×3+2×32=84平方米,
100×84=8400元.
答:完成绿化共需要8400元.
22【答案】:
(1)甲队每天修路的米数;甲队修路800m与乙队修路1200m所用时间相等;甲队修路800m所用时间;乙队每天比甲队多修40m
(2)甲队每天修路为80m
【解析】:
【小问1详解】
x表示甲队每天修路的米数;
等量关系是:甲队修路800m与乙队修路1200m所用时间相等
y表示甲队修路800m所用时间;
等量关系是:乙队每天比甲队多修40m
【小问2详解】
解:若小明设甲队每天修xm,则:
解这个分式方程
经检验,是原分式方程的根
答:甲队每天修路为80m.
设甲队修路800m所用时间为y天,
,
解得:y=10,
经检验,是原分式方程的根,
(m),
答:甲队每天修路为80m.
23【答案】:
(1)①见解析;②见解析
(2)成立,见解析 (3)成立,见解析
【解析】:
【小问1详解】
证明:如图
①∵为等边三角形,
∴,
又为中点,
∴ ,
∵,
∴ ,
∴,
∴;
②∵,
∴为等腰三角形,
∵,
∴.
【小问2详解】
仍然成立,理由如下:
如图,过点D作DM//BC交AC于M
∵为等边三角形,
∴,
∴,
∵,
∴,
∴,为等边三角形,
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
而,
∴.
【小问3详解】
的结论仍然成立,理由如下:如图为所求作图.
作交的延长线于,
易证为等边三角形,
,,
而,
∴,
∵,,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∵,
∴.
山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省浑源县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省浑源县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省安泽县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省安泽县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。