山西省清徐县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开清徐县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. 下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052 B. 0.000052 C. 0.0052 D. 0.0000052
3. 下列运算错误的是( )
A. B. C. D. (a≠0)
4. 现有两根木棒,它们的长是20cm和30cm,若要钉成一个三角形木架,则应选取的第三根木棒长为( )
A. 10cm B. 50cm C. 60cm D. 40cm
5. 下列各式中,正确的是( )
A.
B.
C.
D.
6. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
7. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60° B. 50° C. 40° D. 30°
8. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
9. 如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )
A. 2 B. C. 4 D.
10. 为了响应组织部开展的“百万消费助农”活动,小明的妈妈在“河南消费惠农网”花了120元钱购买了一批拖鞋,在“豫扶网”她发现同类的拖鞋单价每双少了5元,于是又花了100元钱购买了一批同类的鞋子,且比上次还多买了两双.并把购买的鞋子全部赠给敬老院.若设第一批鞋子每双x元,则可以列出方程为( )
A. B.
C. D.
二.填空题(共5题,总计 15分)
11. 因式分解:____________
12. 若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是________cm.
13. 如果代数式2a2+3a+1的值等于6,那么代数式6a2+9a-5=________.
14. 在中,角平分线与边所夹的锐角为,则的度数等于__________.
15. 如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是 _____.
三.解答题(共8题,总计75分)
16. 计算(1)
(2)
(3)
(4)
17. 先化简,再求值:已知,其中x满足.
18. 如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).
(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)在x轴上作出一点P,使PA+PB的值最小(保留作图痕迹)
19. 如图,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.
20. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
21. 已知,其中,
(1)判断A与B的大小;
(2)阅读下面对B分解因式的方法:.请解决下列两个问题:
①仿照上述方法分解因式:;
②指出A与C哪个大,并说明理由.
22. 在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.
15.3分式方程 例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度 小明: 小亮: |
根据以上信息,解答下列问题:
(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;
(2)请你在两个方程中任选一个,解答老师的例题.
23. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
清徐县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:轴对称图形定义:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合.发现A,B,D都不符合定义,所以A,B,D都错误,只有C符合,所以C正确.
故答案为C.
2.【答案】:B
【解析】:解:
故选B
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0) ,故该选项正确,不符合题意;
故选:A.
4.【答案】:D
【解析】:解:根据三角形三边关系,
∴三角形的第三边x满足:,即,
故选:D.
5.【答案】:B
【解析】:解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误.
故选:B.
6.【答案】:A
【解析】:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
7.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
8.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
9.【答案】:C
【解析】:解:∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=∠AOB=30°,
∵PD⊥OA,M是OP的中点,DM=4cm,
∴OP=2DM=8,
∴PD=OP=4,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=4.
故选C
10.【答案】:D
【解析】:解∶ 设第一批鞋子每双x元,根据题意得∶
.
故选∶D
二. 填空题
11.【答案】:
【解析】:解:
故答案为:.
12.【答案】:或.
【解析】:①直角三角形的两边长分别是4cm,3cm,则
第三条边长(cm);
②当直角边为3cm,斜边长为4cm时,第三条边长(cm)
故答案为:或.
13.【答案】:10
【解析】:解:∵2a2+3a+1=6,即2a2+3a=5,
∴6a2+9a+5
=3(2a2+3a)+5
=20.
故答案为20.
14.【答案】: 或
【解析】:设∠B的角平分线交AC于点E,
当时,如图1,
∵AB=AC,
∴,
∴,
∵∠ABE+∠A=∠BEC,
∴,
∴;
当时,如图2,
∵AB=AC,
∴,
∴,
∵,
∴,
∴,
综上所述,的度数为或.
15.【答案】: ①②
【解析】:解:∵∠BAC和∠ABC的平分线AE、BF相交于点O,
∴∠OBA=,,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=
=
=
=,故①正确;
∵∠C=60°,
∴∠BAC+∠ABC=120°,
∵AE、BF分别平分∠BAC与∠ABC,
∴∠OAB+∠OBA==60°,
∴∠AOB=120°,
∴∠AOF=60°,
∴∠BOE=60°,
如图,在AB上取一点H,使BH=BE,
∵BF是∠ABC的角平分线,
∴∠HBO=∠EBO,
在△HBO与△EBO中,
,
∴△HBO≌△EBO(SAS),
∴∠BOH=∠BOE=60°,
∴∠AOH=180°﹣60°﹣60°=60°,
∴∠AOH=∠AOF,
在△HAO与△FAO中,
,
∴△HAO≌△FAO(ASA),
∴AH=AF,
∴AB=BH+AH=BE+AF,故②正确;
作OH⊥AC于H,OM⊥AB于M,
∵∠BAC与∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OH=OM=OD=a,
∵AB+AC+BC=2b,
∴
=
=ab,故③错误,
故答案为:①②.
三.解答题
16【答案】:
(1) ;(2) ;
(3)100;(4).
【解析】:
解:(1)原式=1+4-
=;
(2)原式=a6-a6-8a6
=-8a6;
(3)原式=(10+)×(10-)+32017×()2017×()2
=100-+1×
=100;
(4)原式=[a-(b-2)][a+(b-2)]
=a2-(b-2)2
= a2-b2+4b-4.
17【答案】:
;
【解析】:
解:原式=
原式.
18【答案】:
(1)见解析.
(2)见解析
【解析】:
【小问1详解】
解:A1(4,﹣2),B1(1,﹣1),C1(1,﹣4).
如图所示:△A1B1C1,即为所求;
【小问2详解】
解:如图所示:点P即为所求.
【画龙点睛】本题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.
19【答案】:
见解析
【解析】:
证明:连接BC,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS),
∴∠A=∠D,
在△AOB和△DOC中,
∴△AOB≌△DOC(AAS).
∴∠ABO=∠DCO .
20【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
21【答案】:
(1);
(2)①②当 ,,当时,,当时,,理由见解析.
【解析】:
(1)∵
,
∴.
(2)①
,
②
,
∵,
∴,
从而当时,,
当时,,
当时,.
22【答案】:
(1)甲队每天修路的米数;甲队修路800m与乙队修路1200m所用时间相等;甲队修路800m所用时间;乙队每天比甲队多修40m
(2)甲队每天修路为80m
【解析】:
【小问1详解】
x表示甲队每天修路的米数;
等量关系是:甲队修路800m与乙队修路1200m所用时间相等
y表示甲队修路800m所用时间;
等量关系是:乙队每天比甲队多修40m
【小问2详解】
解:若小明设甲队每天修xm,则:
解这个分式方程
经检验,是原分式方程的根
答:甲队每天修路为80m.
设甲队修路800m所用时间为y天,
,
解得:y=10,
经检验,是原分式方程的根,
(m),
答:甲队每天修路为80m.
23【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省浑源县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省浑源县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省保德县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省保德县2022-2023学年八年级(上)数学期末模拟测试(解析版),共18页。试卷主要包含了选择题等内容,欢迎下载使用。