初中数学湘教版八年级上册2.2 命题与证明第1课时学案
展开2.2 命题与证明
第1课时 定义与命题
1.知道“定义”和“命题”,能判断给出的语句哪些是命题.
2.能把简单的命题写成“如果……,那么……”的形式,能找到命题的条件和结论.(重点)
3.知道什么是“原命题”、“逆命题”和“互逆命题”,能写出已知命题的逆命题.(重难点)
知识模块一 掌握定义、命题的相关概念
【自主学习】
阅读教材P50~P52,完成下面的填空:
1.对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的__定义__.
2.对某一件事情作出判断的语句(陈述句)叫__命题__.
3.命题通常可以写成__“如果……,那么……”__的形式,其中“__如果__”引出的部分是条件、“__那么__”引出的部分是结论.
4.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这两个命题叫__互逆命题__.其中一个叫__原命题__,另一个叫__逆命题__.
【合作探究】
判断下列语句哪些是命题?哪些不是?
(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)同位角相等,两条直线平行吗?(5)鸟是动物;(6)若x-5=0,求x的值.
解:(1)(3)(5)是命题,(2)(4)(6)不是命题.
知识模块二 探究命题的条件与结论的结构
【合作探究】
指出下列命题的条件和结论,并改写成“如果……,那么……”的形式,写出它们的逆命题.
(1)垂直于同一直线的两条直线平行;
解:条件是“垂直于同一直线的两条直线”,结论是“这两条直线平行”.
可以改写成“如果两条直线垂直于同一直线,那么这两条直线平行.”
逆命题是:两条直线平行,这两条直线会垂直于同一直线.
(2)对顶角相等.
解:条件是“两个角是对顶角”,结论是“两个角相等”.
可以改写成“如果两个角是对顶角,那么这两个角相等”.
逆命题是:相等的角是对顶角.
【自主学习】
1.教材P51做一做.
2.写出“两直线平行,同位角相等”的条件和结论,并写出它的逆命题.
解:条件是“两直线平行”,结论是“同位角相等”.
可以改写成“如果两直线平行,那么同位角相等”.
逆命题是:同位角相等,两直线平行.
活动1 小组讨论
例 指出下列命题的条件和结论,并改写成“如果……,那么……”的形式,并写出它的逆命题.
(1)两直线平行,内错角相等;
解:条件是“两直线平行”,结论是“内错角相等”.
可以改写成“如果两直线平行,那么内错角相等.”
逆命题是:内错角相等,两直线平行.
(2)同角的余角相等.
解:条件是“两个角是同一个角的余角”,结论是“这两个角相等”可以改写成“如果两个角是同一角的余角,那么这两个角相等”.
逆命题是:余角相等的两个角是同一个角.
活动2 跟踪训练
1.下列语句中,是命题的是(B)
A.连接A、B两点
B.锐角小于钝角
C.作平行线
D.取线段AB的中点M
2.把下列命题改写成“如果……,那么……”的形式.
(1)能被2整除的数必能被4整除;
解:如果一个数能被2整除,那么这个数一定能被4整除.
(2)异号两数相加得零.
解:如果两个数异号,那么这两个数相加的和为零.
3.写出下列命题的逆命题.
(1)直角三角形的两个锐角互余;
解:两个锐角互余的三角形是直角三角形.
(2)若a=0,则ab=0.
解:若ab=0,则a=0.
活动3 课堂小结
初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案: 这是一份初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
初中数学北师大版八年级上册2 定义与命题导学案: 这是一份初中数学北师大版八年级上册2 定义与命题导学案,共2页。学案主要包含了定义,命题,课堂小结等内容,欢迎下载使用。
湘教版八年级上册2.2 命题与证明第1课时学案: 这是一份湘教版八年级上册2.2 命题与证明第1课时学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。