数学九年级上册24.2.2 直线和圆的位置关系优秀ppt课件
展开转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?
都是沿着圆的切线的方向飞出的.
3. 能运用圆的切线的判定定理和性质定理解决问题.
1. 会判定一条直线是否是圆的切线并会过圆上一点作圆的切线.
2. 理解并掌握圆的切线的判定定理及性质定理.
如图,在⊙O中经过半径OA的外端点A作直线l⊥OA,则圆心O到直线 l 的距离是多少?
这时圆心O到直线 l 的距离就是⊙O的半径.
直线 l 和⊙O有什么位置关系?
问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?
观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?
经过半径的外端并且垂直于这条半径的直线是圆的切线.
下列各直线是不是圆的切线?如果不是,请说明为什么?
(1)不是,因为没有垂直.
(2),(3)不是,因为没有经过半径的外端点A.
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;
2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;
3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
例1 如图,∠ABC=45°,直线AB是☉O上的直径,点A,且AB=AC.求证:AC是☉O的切线.
分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.
证明:∵AB=AC,∠ABC=45°,
∴∠ACB=∠ABC=45°.
∴∠BAC=180°-∠ABC- ∠ACB=90°.
∴ AC是☉O的切线.
如图 所示,线段 AB 经过圆心 O,交⊙O 于点 A、C,∠BAD=∠B=30°,边 BD 交圆于点 D.BD 是⊙O 的切线吗?为什么?
解:BD 是⊙O 的切线.
连接 OD, ∵OD=OA,∠A=30°, ∴∠DOB=60°.
∵∠B=30°,∴∠ODB=90°.∴BD 是⊙O 的切线.
例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC(如图). ∵ OA=OB,CA=CB, ∴ OC是等腰三角形OAB底边AB上的中线. ∴ AB⊥OC. ∵ OC是⊙O的半径, ∴ AB是⊙O的切线.
如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.
分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.
证明:连接OE ,OA, 过O 作OF ⊥AC.
∵⊙O 与AB 相切于E , ∴OE ⊥ AB.
又∵△ABC 中,AB =AC ,O 是BC 的中点.
∴AO 平分∠BAC,
∵OE 是⊙O 半径,OF =OE,OF ⊥ AC.
∴AC 是⊙O 的切线.
又OE ⊥AB ,OF⊥AC.
如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.
如图,OA=OB=5,AB=8, ⊙O的直径为6.求证:直线AB是⊙O的切线.
(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.
证切线时辅助线的添加方法
有切线时常用辅助线添加方法
见切点,连半径,得垂直.
(1)经过圆心且垂直于切线的直线必经过切点;
(2)经过切点且垂直于切线的直线必经过圆心.
思考:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?
∵直线l是⊙O 的切线,A是切点.
证明:假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M.
则OM
利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.
分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;
(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.
(1)求证:△ACB≌△APO;
在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).
证明:∵PA为⊙O的切线,A为切点,
又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.
又∵BC为⊙O的直径,∴∠BAC=90°.
(2)若AP= ,求⊙O的半径.
∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.
如图所示,点 A 是⊙O 外一点,OA 交⊙O 于点 B,AC 是⊙O 的切线,切点是 C,且∠A=30°,BC=1.求⊙O 的半径.
解:连接 OC.∵ AC 是⊙O 的切线, ∴ ∠OCA =90°.又∵ ∠A=30°,∴ ∠COB=60° ∴ OBC 是等边三角形.∴ OB=BC=1,即⊙O 的半径为 1.
如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由.
解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.
1.判断下列命题是否正确.(1)经过半径外端的直线是圆的切线. ( )(2)垂直于半径的直线是圆的切线. ( )(3)过直径的外端并且垂直于这条直径的直线是圆的切线. ( )(4)和圆只有一个公共点的直线是圆的切线. ( )(5)过直径一端点且垂直于直径的直线是圆的切线. ( )
2. 如下图所示,A是☉O上一点,且AO=5, PO=13, AP=12,则PA与☉O的位置关系是 .
3. 如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )A.40° B.35° C.30° D.45°
4.如图, ⊙O切PB于点B,PB=4, PA=2,则⊙O的半径多少?
解:连接OB,则∠OBP=90°.
设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.
OB2+PB2=PO2,即r2+42=(2+r)2.
证明:连接OP.∵AB=AC,∴∠B=∠C. ∵OB=OP,∴∠B=∠OPB. ∴∠OBP=∠C. ∴OP∥AC. ∵PE⊥AC, ∴PE⊥OP. ∴PE为⊙O的切线.
1. 如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E. 求证:PE是⊙O的切线.
2. 如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
已知:△ABC内接于☉O,过点A作直线EF.(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):① _________ ;② _____________ .(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.
证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.∴ ∠D+ ∠DAC=90 °,∵ ∠D与∠B同对 ,∴ ∠D= ∠B,又∵ ∠CAE= ∠B,∴ ∠D= ∠CAE,∴ ∠DAC+ ∠EAC=90°,∴EF是☉O的切线.
经过圆的半径的外端且垂直于这条半径的直线是圆的切线.
证切线时常用辅助线添加方法: ①有公共点,连半径,证垂直;②无公共点,作垂直,证半径.
圆的切线垂直于经过切点的半径
有切线时常用辅助线添加方法: 见切线,连切点,得垂直.
九年级上册24.2.2 直线和圆的位置关系图片课件ppt: 这是一份九年级上册24.2.2 直线和圆的位置关系图片课件ppt,共18页。PPT课件主要包含了CONTENTS,切线长,切线长定理,巩固应用等内容,欢迎下载使用。
初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系评课ppt课件: 这是一份初中数学人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系评课ppt课件
人教版九年级上册24.2.2 直线和圆的位置关系课文配套课件ppt: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系课文配套课件ppt,共22页。PPT课件主要包含了●学习目标,针对训练,BC⊥AB等内容,欢迎下载使用。