![人教A版高中数学必修第一册章末质量检测(四)指数函数与对数函数含答案第1页](http://img-preview.51jiaoxi.com/3/3/13329917/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教A版高中数学必修第一册章末质量检测(四)指数函数与对数函数含答案第2页](http://img-preview.51jiaoxi.com/3/3/13329917/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教A版高中数学必修第一册章末质量检测(四)指数函数与对数函数含答案第3页](http://img-preview.51jiaoxi.com/3/3/13329917/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教A版高中数学必修第一册章末质量检测(四)指数函数与对数函数含答案
展开
这是一份人教A版高中数学必修第一册章末质量检测(四)指数函数与对数函数含答案,共7页。
章末质量检测(四) 指数函数与对数函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等于( )A.lg 9-1 B.1-lg 9C.8 D.2解析:因为lg 9<lg 10=1,所以=1-lg 9.答案:B2.函数y=的定义域是( )A.(-∞,2) B.(2,+∞)C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)解析:由得x>2且x≠3,故选C.答案:C3.函数f(x)=的值域是( )A.(-∞,1) B.(0,1)C.(1,+∞) D.(-∞,1)∪(1,+∞)解析:∵3x+1>1,∴0<<1,∴函数值域为(0,1).答案:B4.函数f(x)=xln x的零点为( )A.0或1 B.1C.(1,0) D.(0,0)或(1,0)解析:函数f(x)的定义域为(0,+∞),由f(x)=0得x=0或ln x=0,即x=0或x=1.又因为x∈(0,+∞),所以x=1.故选B.答案:B5.方程0.9x-x=0的实数解的个数是( )A.0个 B.1个C.2个 D.3个解析:设f(x)=0.9x-x,则f(x)为减函数,值域为R,故f(x)有1个零点,∴方程0.9x-x=0有一个实数解.答案:B6.已知log32=a,3b=5,则log3用a,b表示为( )A.(a+b+1) B.(a+b)+1C.(a+b+1) D.a+b+1解析:因为3b=5,所以b=log35,log3=log330=(log33+log32+log35)=(1+a+b).答案:A7.已知a=5,b=5,c=(),则( )A.a>b>c B.b>a>cC.a>c>b D.c>a>b解析:c=5log3只需比较log23.4,log43.6,log3的大小,又0<log43.6<1,log23.4>log33.4>log3>1,所以a>c>b.答案:C8.在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是( )解析:方法一 当a>1时,y=xa与y=logax均为增函数,但y=xa递增较快,排除C;当0<a<1时,y=xa为增函数,y=logax为减函数,排除A.由于y=xa递增较慢,所以选D.方法二 幂函数f(x)=xa的图象不过(0,1)点,故A错;B项中由对数函数f(x)=logax的图象知0<a<1,而此时幂函数f(x)=xa的图象应是增长越来越慢的变化趋势,故B错,D对;C项中由对数函数f(x)=logax的图象知a>1,而此时幂函数f(x)=xa的图象应是增长越来越快的变化趋势,故C错.答案:D9.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足( )A.y=a(1+5%x) B.y=a+5%C.y=a(1+5%)x-1 D.y=a(1+5%)x解析:经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x.答案:D10.设函数f(x)=x与g(x)=3-x的图象的交点为(x0,y0),则x0所在的区间为( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:令h(x)=x-(3-x),则f(0)=-2,f(1)=-,f(2)=-,f(3)=.故h(x)的零点在(2,3)内,因此两函数图象交点在(2,3)内.选C.答案:C11.三个变量y1,y2,y3随着变量x的变化情况如表:x1357911y151356251 7153 6356 655y25292452 18919 685177 149y356.106.616.957.207.40则与x呈对数型函数、指数型函数、幂函数型函数变化的变量依次是( )A.y1,y2,y3 B.y2,y1,y3C.y3,y2,y1 D.y3,y1,y2解析:三种常见增长型函数中,指数型函数呈爆炸式增长,而对数型函数增长越来越慢,幂函数型函数介于两者之间,结合题表,只有C符合上述规律,故选C.答案:C12.已知函数f(x)=|x|+1,g(x)=k(x+2).若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )A. B.C.(1,2) D.(2,+∞)解析:作出f(x),g(x)图象,如图.因为A(0,1),B(-2,0),kAB==,要使方程f(x)=g(x)有两个不相等的实根,则函数f(x)与g(x)的图象有两个不同的交点,由图可知,<k<1.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.设f(x)=则f(f(2))=________.解析:因为f(2)=log3(22-1)=1,所以f(f(2))=f(1)=2e1-1=2.答案:214.已知函数f(x)=+a的零点为1,则实数a的值为________.解析:由已知得f(1)=0,即+a=0,解得a=-.答案:-15.某种细菌经30分钟数量变为原来的2倍,且该种细菌的繁殖规律为y=ekt,其中k为常数,t表示时间(单位:时),y表示繁殖后细菌总个数,则k=________,经过5小时,1个细菌通过繁殖个数变为________.解析:由题意知,当t=时,y=2,即2=e,∴k=2ln 2,∴y=e2tln 2.当t=5时,y=e2×5×ln 2=210=1 024.即经过5小时,1个细菌通过繁殖个数变为1 024.答案:2ln 2 1 02416.已知0<a<1,k≠0,函数f(x)=若函数g(x)=f(x)-k有两个零点,则实数k的取值范围是________.解析:函数g(x)=f(x)-k有两个零点,即f(x)-k=0有两个解,即y=f(x)与y=k的图象有两个交点,分k>0和k<0作出函数f(x)的图象.当0<k<1时,函数y=f(x)与y=k的图象有两个交点;当k=1时,有一个交点;当k>1或k<0时,没有交点,故当0<k<1时满足题意.答案:(0,1)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1) -(-0.96)0-+1.5-2+[(-)-4];(2)÷100+7.解析:(1)原式=-1-+-2+[()-4] =-1--2+-2+()3=+2=.(2)原式=-(lg 4+lg 25)÷100+14=-2÷10-1+14=-20+14=-6.18.(12分)设函数f(x)=求函数g(x)=f(x)-的零点.解析:求函数g(x)=f(x)-的零点,即求方程f(x)-=0的根.当x≥1时,由2x-2-=0得x=;当x<1时,由x2-2x-=0得x=(舍去)或x=.所以函数g(x)=f(x)-的零点是或.19.(12分)已知f(x)=log2(1+x)+log2(1-x).(1)求函数f(x)的定义域.(2)判断函数f(x)的奇偶性,并加以说明.(3)求f的值.解析:(1)由得即-1<x<1.所以函数f(x)的定义域为{x|-1<x<1}.(2)函数f(x)为偶函数.证明如下:因为函数f(x)的定义域为{x|-1<x<1},又因为f(-x)=log2[1+(-x)]+log2[1-(-x)]=log2(1-x)+log2(1+x)=f(x),所以函数f(x)=log2(1+x)+log2(1-x)为偶函数.(3)f=log2+log2=log2=log2=log2=-1.20.(12分)已知函数f(x)=a3-ax(a>0且a≠1).(1)当a=2时,f(x)<4,求x的取值范围.(2)若f(x)在[0,1]上的最小值大于1,求a的取值范围.解析:(1)当a=2时,f(x)=23-2x<4=22,3-2x<2,得x>.(2)y=3-ax在定义域内单调递减,当a>1时,函数f(x)在[0,1]上单调递减,f(x)min=f(1)=a3-a>1=a0,得1<a<3.当0<a<1时,函数f(x)在[0,1]上单调递增,f(x)min=f(0)=a3>1,不成立.综上:1<a<3.21.(12分)若函数y=ax2-x-1只有一个零点,求实数a的取值范围.解析:(1)若a=0,则f(x)=-x-1为一次函数,函数必有一个零点-1.(2)若a≠0,函数是二次函数,因为二次方程ax2-x-1=0只有一个实数根,所以Δ=1+4a=0,得a=-.综上,当a=0或-时,函数只有一个零点.22.(12分)某工厂因排污比较严重,决定着手整治,一个月时污染度为60,整治后前四月的污染度如下表:月数1234…污染度6031130…污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f(x)=20|x-4|(x≥1),g(x)=(x-4)2(x≥1),h(x)=30|log2x-2|(x≥1),其中x表示月数,f(x),g(x),h(x)分别表示污染度.(1)选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60?解析:(1)用h(x)模拟比较合理,理由如下:因为f(2)=40,g(2)≈26.7,h(2)=30,f(3)=20,g(3)≈6.7,h(3)≈12.5,由此可得h(x)更接近实际值,所以用h(x)模拟比较合理.(2)因为h(x)=30|log2x-2|在x≥4时是增函数,又因为h(16)=60,故整治后有16个月的污染度不超过60.
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)