![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第1页](http://img-preview.51jiaoxi.com/2/3/12947346/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第2页](http://img-preview.51jiaoxi.com/2/3/12947346/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第3页](http://img-preview.51jiaoxi.com/2/3/12947346/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第4页](http://img-preview.51jiaoxi.com/2/3/12947346/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第5页](http://img-preview.51jiaoxi.com/2/3/12947346/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第6页](http://img-preview.51jiaoxi.com/2/3/12947346/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第7页](http://img-preview.51jiaoxi.com/2/3/12947346/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![初中数学人教 版八年级下册 一组对边平行且相等的四边形是平行四边形1 课件第8页](http://img-preview.51jiaoxi.com/2/3/12947346/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
2020-2021学年18.1.2 平行四边形的判定背景图ppt课件
展开
这是一份2020-2021学年18.1.2 平行四边形的判定背景图ppt课件,共20页。PPT课件主要包含了生活中的数学,第二课时,平行四边形的判定方法,尝试应用,求证AECF,典例精析巩固新知,变式训练巩固新知,实际应用服务生活,一分耕耘一分收获等内容,欢迎下载使用。
铺路工人为了保证铁路的两条直铺的铁轨互相平行,只要使夹在铁轨之间的枕木长相等,并且互相平行就可以了,你知道其中的道理吗?
18.1.2平行四边形的判定
汇东实验学校 张应慧
1、两组对边分别平行的四边形是平行四边形
2、两组对边分别相等的四边形是平行四边形
3、两组对角分别相等的四边形是平行四边形
4、两条对角线互相平分的四边形是平行四边形
∵AB∥CD,AD∥BC ∴四边形ABCD是平行四边形
∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
∵∠A=∠C,∠B=∠D
∵ OA=OC,OB=OD
证明平行四边形需要 个条件
在作业本纸上,画一个有一组对边平行且相等的四边形.
步骤1:画一线段AD=3cm.
根据平移的特征,AD、BC有怎样的关系?
连结AB、DC,得到四边形ABCD,它是一组对边平行且相等的四边形,它是平行四边形吗?
猜想:一组对边平行且相等的四边形是平行四边形
步骤2:平移线段AD到BC.
求证:四边形ABCD是平行四边形。
又∵AD=BC,AC=CA,
∴ΔABC≌ΔCDA(SAS)
∴四边形ABCD是平行四边形
(两组对边分别平行的四边形是平行四边形)
一组对边平行且相等的四边形是平行四边形
平行四边形的判定方法5:
3、一组对边平行且相等的四边形是平行四边形
4、两组对角分别相等的四边形是平行四边形
5、两条对角线互相平分的四边形是平行四边形
1、已知:四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,只添加一个条件是: (只需填一个你认为正确的条件即可).
2、判断题: (1)相邻的两个角都互补的四边形 是平行四边形; (2)一组对角相等,另一组对角互补的四边 形是平行四边形; (3)一组对边平行,另一组对边相等的四边 形是平行四边形; (4)对角线相等的四边形是平行四边形;
例1、如图,□ABCD中,E、F分别是边BC、DA的中点。
1、如图,□ABCD中,E、F分别是边BC、DA上的点,且BE=DF。求证:四边形AECF是平行四边形。
例2已知:如图,四边形ABCD中,BE⊥AC于点E,DF⊥AC于点F.AF=CE,BE=DF 求证:四边形ABCD是平行四边形.
证明:∵ BE⊥AC, DF⊥AC ∴ ∠1=∠2=90º 在△AFD与△CEB中 DF=BE ∠1=∠2 AF=CE ∴△AFD≌△CEB(SAS) ∴AD=CB, ∠DAC=∠BCA ∴AD ∥BC ∴四边形ABCD是平行四边形.
2、已知:如图, ABCD中,BE、DF分别平分∠ABC和∠ADC, 求证:∠EBF=∠EDF
铺路工人为了保证铁路的两条直铺的铁轨互相平行,只要使夹在铁轨之间的枕木长相等,并且互相平行就可以了,你悟出其中的道理了吗?
你能告诉同学这节课的收获吗?
两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
两条对角线互相平分的四边形是平行四边形
(1)解决一个数学问题,常要通过“动手实践”--“ 猜想”--“验证猜想(证明)”--“得出结论”
(2)对于平行四边形的问题常转化为三角形来解决。
(3)可以利用平行四边形的性质和判定综合解决线段相等或角相等的问题。根据条件在5种判定方法中选择合理简捷的判定方法。
相关课件
这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定背景图ppt课件,共13页。
这是一份2020-2021学年18.1.2 平行四边形的判定背景图课件ppt,共32页。PPT课件主要包含了美观别致,随处可见,他们的作用可不小,平行四边形的定义,平行四边形性质的证明,数学实验室,你的收获等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定评课ppt课件,共29页。PPT课件主要包含了平行四边形的性质,看我的,来看我的等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)