初二数学2022年江阴市敔山湾学校初二数学3月月考试题
展开命题人:刘茜 审题人:苏晓飞
一、选择题(共10小题,每题3分, 共30分)
1.下列各图是选自历届世博会会徽中的图案.其中是中心对称图形的图案是( )
2.下列调查中,最适合采用普查方式的是( )
A.对无锡市初中学生每天阅读时间的调查 B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查 D.对某校八年级(1)班学生肺活量情况的调查
3.将分式EQ \F(2m,m-n)中的m、n都扩大为原来的3倍,则分式的值( )
A.不变 B.扩大3倍 C.扩大6倍 D.扩大9倍
4.如图,在ABCD中,∠ODA= 90°,AC=10 cm,BD=6 cm,则AD的长为( )
A.4 cm B.5 cm C.6 cm D.8 cm
第4题 第6题 第8题 第9题
在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为( )
A.12个B.9个C.6个 D.3个
6.小军不慎将一块平行四边形玻璃打碎成如图所示的四块,他带了两块碎玻璃到商店配成一块与原来相同的平行四边形玻璃,他带的碎玻璃编号是( )
A.①② B.①④ C.②③ D.②④
7.下列说法中错误的是( )
A.平行四边形的对边相等 B.对角线相等的四边形是矩形
C.矩形的对角线相等 D.两组对边分别相等的四边形是平行四边形
8.如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为( )
A.50° B.40° C.30° D.20°
9.如图,在ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道( )的面积即可
A.△ECDB.△EBFC.△EBCD.△EFC
第10题
10.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中:①CF平分∠BCD;②EF=CF;③S△BEC<2S△CEF;④∠DFE=4∠AEF.一定成立的有( )个.
A.1 B.2 C.3 D.4
二、填空题(共8小题,每空3分, 共24分)
11.若分式eq \f(x2-4,x+2)有意义,则x满足 .
12.已知在□ABCD中,∠A比∠B小20°,那么∠A=__________.
13.用反证法证明,“同位角不相等,两直线不平行”第一步应假设 .
14.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=2,则AB的长为 .
15.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落在EF上G点处,并使折痕经过点A,展开纸片后∠DAG的大小为 .
A
B
C
D
E
F
第14题 第15题 第16题 第17题
16.在平面直角坐标系中,□ABCD的边OC落在x轴的正半轴上,且点C (4,0),B (6,2),直线
第18题
y =kx + 4可将□ABCD的面积平分,则k= .
17.如图,在△ABC中,AB=2,AC= EQ \R(,2),∠BAC=105°,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为 .
18.如图,在矩形ABCD中,E,F分别是边AB,AD上的动点,P是线段EF的中点,PG⊥BC,PH⊥CD,G,H为垂足,连接GH.若AB=8,AD=6,EF=6,则GH的最小值是 .
三、解答题(共66分)
19.(本题8分)计算:(1)--+; (2).
20.(本题6分)有一道题:先化简再求值:(eq \f(x-1,x+1) + eq \f(2x,x2-1))÷eq \f(1,x2-1),其中x=,小明做题时把x=错抄成了x=,但他的计算结果也正确,请你通过计算解释这是为什么?
21.(本题7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.
(1)若将线段AB绕点O顺时针旋转90°得到线段A′B′.试在图中画出线段A′B′;
(2)若线段A″B″与线段A′B′关于y轴对称,请画出线段A″B″;
(3)若点P是此平面直角坐标系内的一点,当点A、B′、B″、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.
22.(本题8分)近年来,各市大力发展绿色交通,构建公共绿色交通体系,“共享单车”给人们的出行带来便利.小亮随机调查了若干市民租用共享单车的骑车时间单位:分,并将获得的数据分成四组,绘制了如下的统计图,请根据图中信息,解答下列问题:
(1)这次被调查的总人数是______.
(2)补全条形统计图;
(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;
(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.
23.(本题8分)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O作EF⊥BD,交AD于点E,交BC于点F.
(1)求证:四边形ABCD为平行四边形;
(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.
24.(本题8分)如图,在 ABCD 中,AC⊥BC,过点 D 作 DE∥AC 交 BC 的延长线于点 E,连接 AE 交 CD 于点 F.
(1)求证:四边形 ADEC 是矩形;
(2)在 ABCD 中,取 AB 的中点 M,连接 CM,若 CM=5,且 AC=8,求四边形 ADEC的面积.
25.(本题10分)如图,在平面直角坐标系中,长方形OABC的顶点A(6,0)、B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位的速度,沿着OA、AB、向终点B运动,设P点运动的时可为t秒(0<t<10).
(1)当△POD的面积等于9时,点P的坐标为 :
(2)当点P在OA上运动时,连接CP.问:是否存在某时刻t,当CP绕点P旋转时,点C能恰好落到AB的中点处?若存在,请求出t的值;若不存在,请说明理由.
(3)当t为何值时,点B关于直线PD的对称点恰好落在直线OP上.
26.(本题11分)在矩形ABCD中,AB=6,BC=4,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α<180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.
(1)如图①,当点E落在DC边上时,直写出线段EC的长度为 ;
(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,
①求证:△ACD≌△CAE;②求线段DH的长度.
(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.
无锡市江阴市敔山湾实验学校2021-2022学年八年级3月月考数学试题(含解析): 这是一份无锡市江阴市敔山湾实验学校2021-2022学年八年级3月月考数学试题(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
无锡市江阴市敔山湾实验学校创新班2021-2022学年七年级3月月考数学试题(含解析): 这是一份无锡市江阴市敔山湾实验学校创新班2021-2022学年七年级3月月考数学试题(含解析),共24页。
2022年江苏省无锡市江阴市敔山湾实验学校中考数学一模试卷(含解析): 这是一份2022年江苏省无锡市江阴市敔山湾实验学校中考数学一模试卷(含解析),共28页。