初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习
展开八年级数学下册第二十一章一次函数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A.B.
C. D.
2、关于一次函数的图像与性质,下列说法中正确的是( )
A.y随x的增大而增大;
B.当 m=3时,该图像与函数的图像是两条平行线;
C.不论m取何值,图像都经过点(2,2) ;
D.不论m取何值,图像都经过第四象限.
3、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y1 | … | 1 | 2 | 3 | 4 | 5 | … |
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y2 | … | 5 | 2 | ﹣1 | ﹣4 | ﹣7 | … |
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
4、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
5、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
6、下列语句是真命题的是( ).A.内错角相等
B.若,则
C.直角三角形中,两锐角和的函数关系是一次函数
D.在中,,那么为直角三角形
7、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
8、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
9、直线和在同一直角坐标系中的图象可能是( )
A. B.
C. D.
10、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
A.小于0 B.等于0 C.大于0 D.非负数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、(1)如果是y关于x的正比例函数,则k=_________.
(2)若是关于x的正比例函数,m=_________.
(3)如果y=3x+k-4是y关于x的正比例函数,则k=_____.
2、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.
3、观察图象可以发现:
①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;
②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小.
4、当k>0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
① b>0时,直线经过第______象限;
② b<0时,直线经过第______ 象限.
当k<0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
①b>0时,直线经过第______象限;
② b<0时,直线经过第______象限.
5、已知,,在x轴找一点P,使的值最小,则点P的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.
2、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
(2)试比较哪家公司更优惠?说明理由.
3、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
(1)求证:点(﹣2,﹣3)在直线l2上;
(2)当m=2时,请判断直线l1与l2是否相交?
4、已知一次函数 y=-x+2.
(1)求这个函数的图像与两条坐标轴的交点坐标;
(2)在平面直角坐标系中画出这个函数的图像;
(3)结合函数图像回答问题:
①当 x>0 时,y 的取值范围是 ;
②当 y<0 时,x 的取值范围是 .
5、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).
(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;
(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;
(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
2、D
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
【详解】
A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
C、一次函数,过定点,故本选项不正确;
D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
故选D.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
3、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
4、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
5、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
6、C
【解析】
【分析】
根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.
【详解】
解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;
B、若,则,故原命题是假命题,不符合题意;
C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;
D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;
故选:C.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.
7、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
8、C
【解析】
【分析】
先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
【详解】
∵∠OBA=90°,A(4,4),且,点D为OB的中点,
∴点D(2,0),AC=1,BC=3,点C(4,3),
设直线AO的解析式为y=kx,
∴4=4k,
解得k=1,
∴直线AO的解析式为y=x,
过点D作DE⊥AO,交y轴于点E,交AO于点F,
∵∠OBA=90°,A(4,4),
∴∠AOE=∠AOB=45°,
∴∠OED=∠ODE=45°,OE=OD,
∴DF=FE,
∴点E是点D关于直线AO的对称点,
∴点E(0,2),
连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
设CE的解析式为y=mx+n,
∴,
解得,
∴直线CE的解析式为y=x+2,
∴,
解得,
∴使四边形PDBC周长最小的点P的坐标为(,),
故选C.
【点睛】
本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
9、D
【解析】
【分析】
根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.
【详解】
根据直线和的解析式知,k与-2k符号相反,b与-b符号相反(由图知b≠0);
A选项中的直线与y轴的交点均在y轴正半轴上,故不合题意;
B、C两选项中两直线从左往右均是上升的,则k与-2k全为正,也不合题意;
D选项中两直线满足题意;
故选:D
【点睛】
本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.
10、C
【解析】
【分析】
一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
【详解】
解:如图,函数的图象经过第一、二、三象限,
则函数的图象与轴交于正半轴,
故选C
【点睛】
本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
二、填空题
1、 2 -2 4
【解析】
略
2、##
【解析】
【分析】
分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.
【详解】
解:如图,点A点B的坐标分别是(4,8),(12,0),
,
设直线的解析式为,
解得
直线的解析式为
设直线的解析式为,
解得
直线的解析式为,
则即为的重心
即
解得
故答案为:
【点睛】
本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.
3、 上升 下降
【解析】
略
4、 上升 增大 一、二、三 一、三、四 下降 减小 一、二、四 二、三、四
【解析】
略
5、
【解析】
【分析】
根据题意求出A点关于y轴的对称点,连接,交x轴于点P,则P即为所求点,用待定系数法求出过两点的直线解析式,求出此解析式与x轴的交点坐标即可.
【详解】
解:作点A关于y轴的对称点,连接,
设过的直线解析式为,把,,
则
解得:,,
故此直线的解析式为:,
当时,,
即点P的坐标为.
故答案为:.
【点睛】
本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.
三、解答题
1、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;
(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【解析】
【分析】
(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.
(1)
设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,
解得,
答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.
(2)
设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,
∵甲种奖品的数量不少于乙种奖品数量的一半,
∴m≥(60-m),
∴m≥20.
依题意,得:w=20m+10(60-m)=10m+600,
∵10>0,
∴w随m值的增大而增大,
∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.
2、 (1)y甲=25x+2 000;y乙=35x
(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
【解析】
【分析】
(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
(1)
解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
依题意得y甲=25x+2 000;y乙=35x;
(2)
解:当y甲>y乙时,即25x+2 000>35x,
解得:x<200;
当y甲=y乙时,即25x+2 000=35x,
解得:x=200;
当y甲<y乙时,即25x+2 000<35x,
解得:x>200.
∴当0<x<200时,选择乙公司更优惠;
当x=200时,选择两公司费用一样多;
当x>200时,选择甲公司更优惠.
【点睛】
此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
3、 (1)见解析
(2)直线l1与l2不相交
【解析】
【分析】
(1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;
(2)求出解析式与比较,发现系数相同,故不可能相交.
【详解】
(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,
∴点(﹣2,﹣3)在直线l2上;
(2)∵直线l1经过原点与点P(m,2m),
∴直线l1为y=2x,
当m=2时,则直线l2:y=2x+1,
∵x的系数相同,
∴直线l1与l2不相交.
【点睛】
本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.
4、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)见解析
(3)①y<2;②x>2
【解析】
【分析】
(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
(2)两点法画出函数图象;
(3)通过观察函数图象求解即可.
(1)
解:令x=0,则y=2,
令y=0,则x=2,
∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)
解:这个函数的图像如图所示:
,
(3)
解:①观察图像可知:当x>0时,y<2,
故答案为:y<2;
②观察图像可知:当y<0时,x>2,
故答案为:x>2.
【点睛】
本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
5、 (1)y1=﹣x+3
(2)n=a+b
(3)当a>b时,x>1;当a<b时,x<1
【解析】
【分析】
(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;
(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到,先利用加减消元法求出m,然后得到n与a、b的关系式;
(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.
(1)
解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得
,
解得,
∴y1的函数表达式为y1=﹣x+3;
(2)
解:∵y1与y2的图象交于点A(m,n),
∴,
∴m=1,n=a+b;
(3)
解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,
y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,
∵y3>y4,
∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,
整理得(a﹣b)x>a﹣b,
当a>b时,x>1;
当a<b时,x<1.
【点睛】
本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共27页。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试综合训练题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共23页。试卷主要包含了一次函数的图象一定经过,巴中某快递公司每天上午7等内容,欢迎下载使用。
冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共27页。试卷主要包含了如图所示,直线分别与轴,巴中某快递公司每天上午7等内容,欢迎下载使用。