|试卷下载
搜索
    上传资料 赚现金
    2022年精品解析冀教版八年级数学下册第二十一章一次函数专题练习试题(名师精选)
    立即下载
    加入资料篮
    2022年精品解析冀教版八年级数学下册第二十一章一次函数专题练习试题(名师精选)01
    2022年精品解析冀教版八年级数学下册第二十一章一次函数专题练习试题(名师精选)02
    2022年精品解析冀教版八年级数学下册第二十一章一次函数专题练习试题(名师精选)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第二十一章 一次函数综合与测试巩固练习

    展开
    这是一份初中冀教版第二十一章 一次函数综合与测试巩固练习,共30页。试卷主要包含了一次函数的大致图象是,已知一次函数y=kx+b,若直线y=kx+b经过一,已知正比例函数的图像经过点等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )

    A. B. C. D.
    2、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    3、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.

    则下列结论:
    ①A,B两城相距300千米;
    ②乙车比甲车晚出发1小时,却早到1小时;
    ③乙车出发后2.5小时追上甲车;
    ④当甲、乙两车相距50千米时,或.
    其中正确的结论有( )
    A.1个 B.2个 C.3个 D.4个
    4、一次函数的大致图象是( )
    A. B.
    C. D.
    5、已知点,在一次函数的图像上,则m与n的大小关系是( )
    A. B. C. D.无法确定
    6、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是(  )
    A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
    7、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A. B. C. D.
    8、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是( )
    A. B. C. D.无法确定
    9、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
    A.小于0 B.等于0 C.大于0 D.非负数
    10、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )

    A.x<2 B.x>2 C.x<0 D.x>0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
    2、如图,直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P,若点P(1,n),则方程组的解是_____.

    3、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.

    4、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
    5、已知 M(1, a )和 N(2, b )是一次函数 y=-x+1 图像上的两点,则 a______b (填“>”、“<”或“=”).
    三、解答题(5小题,每小题10分,共计50分)
    1、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:

    普通板栗(件)
    精品板栗(件)
    总金额(元)
    甲购买情况
    2
    3
    350
    乙购买情况
    4
    1
    300
    (1)求普通板栗和精品板栗的单价分别是多少元.
    (2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
    2、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
    (1)求对角线AB所在直线的函数关系式;
    (2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
    (3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.

    3、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:

    (1)求蜡烛在燃烧过程中高度与时间之间的函数表达式
    (2)经过多少小时蜡烛燃烧完毕?
    4、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).

    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
    5、已知一次函数y=kx﹣4,当x=3时,y=﹣1,求它的解析式以及该直线与坐标轴的交点坐标.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
    【详解】
    解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
    设直线AB的解析式为,把,代入得,
    ,解得,,
    ∴AB的解析式为,
    同理可求直线AC的解析式为,
    设点D坐标为,点M坐标为,
    ∵,

    ∵,,
    ∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
    ∵∠EFM=∠DGM=∠DME
    ∴∠FEM+∠FME=∠DMG+∠FME =90°,
    ∴∠FEM =∠DMG,
    ∵DM=EM,
    ∴△DGM≌△MFE,
    ∴DG=FM,GM=EF,
    根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
    解得,,
    所以,点M坐标为,
    故选:A.

    【点睛】
    本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
    2、A
    【解析】
    【分析】
    根据一次函数的性质得出y随x的增大而减小,进而求解.
    【详解】
    由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
    ∵-3<2,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
    3、B
    【解析】
    【分析】
    当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
    【详解】
    ∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
    ∴①正确;
    ∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
    ∴乙车比甲车晚出发1小时,却早到1小时;
    ∴②正确;
    设,
    ∴300=5m,
    解得m=60,
    ∴;
    设,

    解得,
    ∴;

    解得t=2.5,
    ∴2.5-1=1.5,
    ∴乙车出发后1.5小时追上甲车;
    ∴③错误;
    当乙未出发时,,
    解得t=;
    当乙出发,且在甲后面时,,
    解得t=;
    当乙出发,且在甲前面时,,
    解得t=;
    当乙到大目的地,甲自己行走时,,
    解得t=;
    ∴④错误;
    故选B.
    【点睛】
    本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
    4、A
    【解析】
    【分析】
    由知直线必过,据此求解可得.
    【详解】
    解:,
    当时,,
    则直线必过,
    如图满足条件的大致图象是:

    故选:A.
    【点睛】
    本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
    5、A
    【解析】
    【分析】
    根据一次函数的性质,y随x增大而减小判断即可.
    【详解】
    解:知点,在一次函数的图像上,
    ∵-2<0,
    ∴y随x增大而减小,
    ∵,
    ∴,
    故选:A.
    【点睛】
    本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.
    6、D
    【解析】
    【分析】
    根据题意和一次函数的性质,可以解答本题.
    【详解】
    解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
    ∴b=-1,k>0,
    故选:D.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    7、B
    【解析】
    【分析】
    根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
    【详解】
    解:∵直线y=kx+b经过一、二、四象限,
    ∴k<0,b>0,
    ∴﹣k>0,
    ∴直线y=bx﹣k过一、二、三象限,
    ∴选项B中图象符合题意.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    8、A
    【解析】
    【分析】
    先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.
    【详解】
    解:∵正比例函数的图像经过点(2,4)、代入解析式得
    解得
    ∴正比例函数为
    ∵<0,
    ∴y随x的增大而减小,
    由于-1<1,故y1 故选:A.
    【点睛】
    本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,y随x的增大而减小是解题关键.
    9、C
    【解析】
    【分析】
    一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
    【详解】
    解:如图,函数的图象经过第一、二、三象限,

    则函数的图象与轴交于正半轴,

    故选C
    【点睛】
    本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
    10、A
    【解析】
    【分析】
    y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
    【详解】
    解:∵一次函数y=f(x)的图象经过点(2,0),
    ∴如果y>0,则x<2,
    故选:A.
    【点睛】
    本题考查一次函数的图象,数形结合是解题的关键.
    二、填空题
    1、一次函数
    【解析】

    2、
    【解析】
    【分析】
    由两条直线的交点坐标P(1,n),先求出n,再求出方程组的解即可.
    【详解】
    解:∵y=﹣x+4经过P(1,n),
    ∴n=-1+4=3,
    ∴n=3,
    ∴直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P(1,3),
    ∴,
    故答案为.
    【点睛】
    本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.
    3、(12,0)或(-,0)
    【解析】
    【分析】
    由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.
    【详解】
    解:当x=0时,y=4,当y=0时,x=-3,
    ∴A(-3,0),B(0,4),
    ∴OA=3,OB=4,
    ∴,
    设点A的对应点为A1,OC=x,
    当点C在x轴正半轴时,如图,
    根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,
    在Rt△A1OC中,由勾股定理得:,
    解得:x=12,即OC=12,
    ∴点C坐标为(12,0);

    当点C在x轴负半轴时,如图,
    根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,
    在Rt△A1OC中,由勾股定理得:,
    解得:,即OC= ,
    ∴点C的坐标为(-,0),

    综上,点C的坐标为(12,0)或(-,0),
    故答案为:(12,0)或(-,0).
    【点睛】
    本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.
    4、k<1
    【解析】
    【分析】
    利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.
    【详解】
    解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,
    ∴k-1<0,
    解得k<1;
    故答案为:k<1.
    【点睛】
    本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
    5、>
    【解析】
    【分析】
    由M(1,a)和N(2,b)是一次函数y=-x+1图象上的两点,利用一次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.
    【详解】
    解:当x=1时,a=-1+1=0;
    当x=2时,b=-2+1=-1.
    ∵0>-1,
    ∴a>b.
    故答案为:>.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
    三、解答题
    1、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
    (2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【解析】
    【分析】
    (1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
    (2)加工普通板栗a件,则加工精品板栗(4000-a)件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
    (1)
    解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:

    解得x=55y=80,
    答:普通板栗的单价为55元,精品板栗的单价为80元;
    (2)
    解:加工普通板栗a件,则加工精品板栗(4000-a)件,
    由题意得:,
    ∵,1000≤a≤3000,
    ∴当时,所获总利润w最多,
    w=-5×1000+80000=75000,
    ∴,
    答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【点睛】
    题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
    2、(1);(2)5;(3)点P的坐标为(,-)或(-,)
    【解析】
    【分析】
    (1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
    (2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
    (3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
    (方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
    【详解】
    解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
    ∴AO=CB=4,OB=AC=8,
    ∴A点坐标为(0,4),B点坐标为(8,0).
    设对角线AB所在直线的函数关系式为y=kx+b,
    则有,解得:,
    ∴对角线AB所在直线的函数关系式为y=-x+4.
    (2)∵∠AOB=90°,
    ∴勾股定理得:AB==4,
    ∵MN垂直平分AB,
    ∴BN=AN=AB=2.
    ∵MN为线段AB的垂直平分线,
    ∴AM=BM
    设AM=a,则BM=a,OM=8-a,
    由勾股定理得,a2=42+(8-a)2,
    解得a=5,即AM=5.
    (3)(方法一)∵OM=3,
    ∴点M坐标为(3,0).
    又∵点A坐标为(0,4),
    ∴直线AM的解析式为y=-x+4.
    ∵点P在直线AB:y=-x+4上,
    ∴设P点坐标为(m,-m+4),
    点P到直线AM:x+y-4=0的距离h==.
    △PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
    解得m=± ,
    故点P的坐标为(,-)或(-,).

    (方法二)∵S长方形OACB=8×4=32,
    ∴S△PAM=32.
    设点P的坐标为(x,-x+4).
    当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
    解得:x=,
    ∴点P的坐标为(,-);
    当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
    解得:x=-,
    ∴点P的坐标为(-,).
    综上所述,点P的坐标为(,-)或(-,).
    【点睛】
    本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
    3、 (1)y=-8x+15(0≤x≤)
    (2)小时
    【解析】
    【分析】
    (1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.
    (2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;
    (1)
    由图象可知过(0,15),(1,7)两点,
    设一次函数表达式为y=kx+b,
    ∴,
    解得,
    ∴此一次函数表达式为:y=-8x+15(0≤x≤).
    (2)
    令y=0
    ∴-8x+15=0
    解得:x=,
    答:经过小时蜡烛燃烧完毕.
    【点睛】
    本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
    4、 (1)点E,点F;
    (2)()或();
    (3)b的取值范围1<b<2或2<b<3.
    【解析】
    【分析】
    (1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
    (2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
    (3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
    (1)
    解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
    以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
    ∴△ABE为直角三角形,且AE大于AB;

    以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,

    ∴点E与点F是AB关联点,
    点G不在A、B两点垂直的直线上,故不能构成直角三角形,
    故答案为点E,点F;
    (2)
    解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
    ∴△AOB为等腰直角三角形,AB=
    ∴∠ABO=∠BAO=45°,
    以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
    ∴∠OAS=90°-∠BAO=45°,
    ∴△AOS为等腰直角三角形,
    ∴OS=OA=1,点S(1,0),
    设AS解析式为代入坐标得:

    解得,
    AS解析式为,
    ∴,
    解得,
    点P(),
    AP=,AP>AB
    以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
    ∴∠OBR=90°-∠ABO=45°,
    ∴△OBR为等腰直角三角形,
    ∴OR=OB=1,点R(0,-1),
    过点R与AS平行的直线为AS直线向下平移2个单位,
    则BR解析式为,
    ∴,
    解得,
    点P1(),
    AP1=>,
    ∴点P为线段AB的关联点,点P的坐标为()或();

    (3)
    解:过点A与AB垂直的直线交直线y=2x+2于U,
    把△AOB绕点A顺时针旋转90°,得△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(-1,b-1)在直线上,

    ∴,
    ∴当b>1时存在两个“关联点”,
    当b<1时,UA<AB,不满足定义,没有两个“关联点”

    当过点A的直线与直线平行时没有 “关联点”
    与x轴交点X(-1,0),与y轴交点W(0,2)
    ∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
    ∴△OXW顺时针旋转90°,得到△OAB,
    ∴OB=OW=2,
    ∴在1<b<2时,直线上存在两个AB的“关联点”,

    当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(1,1+b)在直线上,

    ∴解得
    ∴当2<b<3时, 直线上存在两个AB的“关联点”,
    当b>3时,UA<AB,不满足定义,没有两个“关联点”

    综合得,b的取值范围1<b<2或2<b<3.
    【点睛】
    本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
    5、一次函数的解析式为y=x−4,与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).
    【解析】
    【分析】
    把x、y的值代入y=kx−4,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.
    【详解】
    解:∵一次函数y=kx−4,当x=3时,y=−1,
    ∴−1=3k−4,解得k=1,
    ∴一次函数的解析式为y=x−4,
    ∵当y=0时,x=4,
    当x=0时,y=−4,
    ∴该直线与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).
    【点睛】
    本题考查了待定系数法求一次函数的解析式,一次函数与坐标轴的交点.正确求出直线的解析式是解题的关键.

    相关试卷

    初中第二十一章 一次函数综合与测试复习练习题: 这是一份初中第二十一章 一次函数综合与测试复习练习题,共22页。试卷主要包含了如图,已知点K为直线l,直线不经过点,点A,如图,一次函数y=kx+b等内容,欢迎下载使用。

    数学第二十一章 一次函数综合与测试课后练习题: 这是一份数学第二十一章 一次函数综合与测试课后练习题,共28页。试卷主要包含了已知,如图所示,直线分别与轴等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后测评: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后测评,共28页。试卷主要包含了点A,已知正比例函数的图像经过点,如图所示,直线分别与轴等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map