![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含答案)01](http://img-preview.51jiaoxi.com/2/3/12764916/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含答案)02](http://img-preview.51jiaoxi.com/2/3/12764916/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含答案)03](http://img-preview.51jiaoxi.com/2/3/12764916/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试一课一练
展开八年级数学下册第二十一章一次函数专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
2、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
3、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
4、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
5、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )
A.k<0 B.k≤0 C.k>0 D.k≥0
6、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
7、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y1 | … | 1 | 2 | 3 | 4 | 5 | … |
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y2 | … | 5 | 2 | ﹣1 | ﹣4 | ﹣7 | … |
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
8、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
9、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
10、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用待定系数法确定一次函数表达式所需要的步骤是什么?
①设——设函数表达式y=___,
②代——将点的坐标代入y=kx+b中,列出关于___、___的方程
③求——解方程,求k、b
④写——把求出的k、b值代回到表达式中即可.
2、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.
3、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
4、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.
5、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.
(1)求k的值;
(2)求四边形OCNB的面积;
(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
2、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为 ,点B的坐标为 ;
(2)求OC的长度,并求出此时直线BC的表达式;
(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.
3、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).
(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1 ,B1 ,C1 ;
(2)计算△ABC的面积;
(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标 .
4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:
| 普通板栗(件) | 精品板栗(件) | 总金额(元) |
甲购买情况 | 2 | 3 | 350 |
乙购买情况 | 4 | 1 | 300 |
(1)求普通板栗和精品板栗的单价分别是多少元.
(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
5、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:
(1)求蜡烛在燃烧过程中高度与时间之间的函数表达式
(2)经过多少小时蜡烛燃烧完毕?
-参考答案-
一、单选题
1、C
【解析】
【分析】
由函数“上加下减”的原则解题.
【详解】
解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
当x=2时,y=2+2=4,
所以在平移后的函数图象上的是(2,4),
故选:C.
【点睛】
本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
2、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
3、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
4、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
5、C
【解析】
略
6、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
7、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
8、A
【解析】
【分析】
由 可得一次函数的性质为随的增大而增大,从而可得答案.
【详解】
解:点和点是一次函数图象上的两点,,
随的增大而增大,
即一定为正数,
故选A
【点睛】
本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
9、C
【解析】
【分析】
通过一次函数中k和b的符号决定了直线经过的象限来解决问题.
【详解】
解:因为y=-x+4中,
k=-1<0,b=4>0,
∴直线y=-x+4经过第一、二、四象限,
所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.
故选:C.
【点睛】
本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.
10、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
二、填空题
1、 kx+b k b
【解析】
略
2、x<-2
【解析】
【分析】
根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.
【详解】
∵点A坐标为(-2,0),
∴关于x的不等式kx+b<0的解集是x<-2,
故答案为:x<-2
【点睛】
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.
3、k<1
【解析】
【分析】
利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.
【详解】
解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,
∴k-1<0,
解得k<1;
故答案为:k<1.
【点睛】
本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
4、
【解析】
【分析】
利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.
【详解】
解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,
∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,
故答案为x≥2.
【点睛】
本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
5、 x ≥-4
【解析】
【分析】
根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.
【详解】
解:根据图像可知,函数和交于点P(-4,-2),
则二元一次方程组的解是,
由图像可知,当时,,
故答案为:;.
【点睛】
本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.
三、解答题
1、 (1)k=2;
(2)7;
(3)≤m≤3
【解析】
【分析】
(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
(3)先求得点P的纵坐标,根据题意列不等式组求解即可.
(1)
解:令x=0,则y=2;
∴B (0,2),
∴OB=2,
∵AB=;
∴OA=1,
∴A (-1,0),
把B (-1,0)代入y=kx+2得:0=-k+2,
∴k=2;
(2)
解:∵直线l2平行于直线y=−2x.
∴设直线l2的解析式为y=−2x+b.
把(2,2)代入得2=−22+b,
解得:b=6,
∴直线l2的解析式为.
令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
由(1)得直线l1的解析式为.
解方程组得:,
∴N (1,4),
四边形OCNB的面积=S△ODC- S△NBD
=
=7;
(3)
解:∵点P的横坐标为m,
∴点P的纵坐标为,
∴PM=,
∵PM≤3,且点P在线段CD上,
∴≤3,且m≤3.
解得:≤m≤3.
【点睛】
本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
2、 (1)(4,0),(0,3)
(2),y=﹣x+3
(3)3或9
【解析】
【分析】
(1)令x=0和y=0即可求出点A,B的坐标;
(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;
(3)先求出点P的坐标,根据三角形的面积公式即可求解.
(1)
解:令y=0,则x=4;令x=0,则y=3,
故点A的坐标为(4,0),点B的坐标为(0,3).
故答案为:(4,0),(0,3);
(2)
解:如图所示,连接BC,
设OC=x,
∵直线CD垂直平分线段AB,
∴AC=CB=4﹣x,
∵∠BOA=90°,
∴OB2+OC2=CB2,
32+x2=(4﹣x)2,
解得,
∴,
∴C(,0),
设直线BC的解析式为y=kx+b,
则有,
解得,
∴直线BC的解析式为y=﹣x+3;
(3)
解:如图,
∵点A的坐标为(4,0),
∴OA=4,
∵OP=OA,
∴OP=2,
∴点P的坐标为(2,0),P′(﹣2,0),
∴AP=2,AP′=6,
∴S△ABP=AP•OB=×2×3=3
S△ABP′=AP′•OB=×6×3=9,
综上:△ABP的面积为3或9.
【点睛】
本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.
3、 (1)
(2)3.5
(3)
【解析】
【分析】
(1)依据轴对称的性质进行作图,即可得到△A1B1C1,进而得出△A1B1C1三顶点坐标;
(2)依据割补法进行计算,即可得到△ABC的面积;
(3)作点A关于x轴的对称点,连接B,交x轴于点P,依据一次函数的图象可得点P的坐标.
(1)
如图,△A1B1C1即为所求;
其中A1,B1,C1的坐标分别为:
故答案为:
(2)
△ABC的面积为:3×3-×3×1-×1×2-×2×3=3.5.
(3)
如图,作点A关于x轴的对称点,连接B,则B与x轴的交点即是点P的位置.
设B的解析式为y=kx+b(k≠0),
把和B(4,2)代入可得:
,解得,
∴y=x-2,
令y=0,则x=2,
∴P点坐标为,
故答案为:.
【点睛】
本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【解析】
【分析】
(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
(1)
解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:
,
解得,
答:普通板栗的单价为55元,精品板栗的单价为80元;
(2)
解:加工普通板栗a件,则加工精品板栗件,
由题意得:,
∵,,
∴当时,所获总利润w最多,
,
∴,
答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【点睛】
题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
5、 (1)y=-8x+15(0≤x≤)
(2)小时
【解析】
【分析】
(1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.
(2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;
(1)
由图象可知过(0,15),(1,7)两点,
设一次函数表达式为y=kx+b,
∴,
解得,
∴此一次函数表达式为:y=-8x+15(0≤x≤).
(2)
令y=0
∴-8x+15=0
解得:x=,
答:经过小时蜡烛燃烧完毕.
【点睛】
本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。
数学八年级下册第二十一章 一次函数综合与测试复习练习题: 这是一份数学八年级下册第二十一章 一次函数综合与测试复习练习题,共23页。试卷主要包含了若一次函数,下列函数中,一次函数是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了若一次函数的图像经过第一,已知P1等内容,欢迎下载使用。