终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数同步训练试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数同步训练试卷(精选含详解)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数同步训练试卷(精选含详解)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数同步训练试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )

    A. B.
    C. D.
    2、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
    A. B. C. D.
    3、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    4、关于函数y=-2x+1,下列结论正确的是( )
    A.图像经过点 B.y随x的增大而增大
    C.图像不经过第四象限 D.图像与直线y=-2x平行
    5、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
    A.且 B.且
    C.且 D.且
    6、若实数、满足且,则关于的一次函数的图像可能是( )
    A. B. C. D.
    7、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )

    A. B. C.3h D.
    8、下列不能表示是的函数的是( )
    A.

    0
    5
    10
    15

    3
    3.5
    4
    4.5
    B.
    C.
    D.
    9、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    10、下列问题中,两个变量成正比例的是(  )
    A.圆的面积S与它的半径r
    B.三角形面积一定时,某一边a和该边上的高h
    C.正方形的周长C与它的边长a
    D.周长不变的长方形的长a与宽b
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.

    2、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.

    3、直线y=2x-4与两坐标轴围成的三角形面积为___________________.
    4、已知函数是关于x的一次函数,则______.
    5、下列函数:①;②;③;④;⑤.其中一定是一次函数的有____________.(只是填写序号)
    三、解答题(5小题,每小题10分,共计50分)
    1、已知y与x﹣2成正比例,且当x=1时,y=﹣2

    (1)求变量y与x的函数关系式;
    (2)请在给出的平面直角坐标系中画出此函数的图象;
    (3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集   .
    2、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).

    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
    3、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:

    普通板栗(件)
    精品板栗(件)
    总金额(元)
    甲购买情况
    2
    3
    350
    乙购买情况
    4
    1
    300
    (1)求普通板栗和精品板栗的单价分别是多少元.
    (2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
    4、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:

    (1)求蜡烛在燃烧过程中高度与时间之间的函数表达式
    (2)经过多少小时蜡烛燃烧完毕?
    5、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
    【详解】
    解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,

    点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
    点P沿D→C移动,的面积不变,
    点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
    故选:A.
    【点睛】
    本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
    2、C
    【解析】
    【分析】
    因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,
    ∵A(-1,2),
    ∴A′(-1,﹣2),
    设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,
    ∴,解得,
    ∴直线A′B的解析式为y=-2x﹣4,
    当y=0时,x=-2,
    ∴C(-2,0).
    故选:C

    【点睛】
    本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.
    3、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    4、D
    【解析】
    【分析】
    根据一次函数的性质对各选项进行逐一判断即可.
    【详解】
    解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
    B、由于k=−2<0,则y随x增大而减小,故本选项错误;
    C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
    D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
    故选:D.
    【点睛】
    本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
    5、D
    【解析】
    【分析】
    根据一次函数图象与系数的关系解答即可.
    【详解】
    解:一次函数、是常数,的图象不经过第三象限,
    且,
    故选:D.
    【点睛】
    本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    6、B
    【解析】
    【分析】
    根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
    【详解】
    解:∴实数、满足,
    ∴、互为相反数,
    ∵,
    ∴,,

    ∴一次函数的图像经过二、三、四象限,
    故选:B.
    【点睛】
    本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
    7、A
    【解析】
    【分析】
    根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
    【详解】
    解:根据图象可知,慢车的速度为 km/h.
    对于快车,由于往返速度大小不变,总共行驶时间是6h,
    因此单程所花时间为3 h,故其速度为 km/h.
    所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
    对于快车,y与t的函数表达式为
    y=,
    联立①②,可解得交点横坐标为t=4.5,
    联立①③,可解得交点横坐标为t=,
    因此,两车先后两次相遇的间隔时间是,
    故选:A.
    【点睛】
    本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
    8、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    9、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    10、C
    【解析】
    【分析】
    分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
    【详解】
    解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
    所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
    所以正方形的周长C与它的边长a成正比例,故C符合题意;

    所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
    故选C
    【点睛】
    本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
    二、填空题
    1、x≥1
    【解析】
    【分析】
    将P(a,2)代入直线l1:y=x+1中求出a=1,然后再根据图像越在上方,其对应的函数值越大即可求解.
    【详解】
    解:将点P(a,2)坐标代入直线y=x+1,得a=1,
    从图中直接看出,在P点右侧时,直线l1:y=x+1在直线l2:y=mx+n的上方,
    即当x≥1时,x+1≥mx+n,
    故答案为:x≥1.
    【点睛】
    本题考查了一元一次不等式与一次函数的关系,图像越在上方,其对应的函数值就越大.
    2、
    【解析】
    【分析】
    首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.
    【详解】
    解:如图,点的坐标为,点的坐标为,
    ,,则.
    △是等腰直角三角形,,

    点的坐标是.
    同理,在等腰直角△中,,,则.
    点、均在一次函数的图象上,
    ,解得,,
    该直线方程是.
    点,的横坐标相同,都是3,
    当时,,即,则,

    同理,,

    ,,
    当时,,
    即点的坐标为,.
    故答案为,.

    【点睛】
    本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.
    3、
    【解析】
    【分析】
    画出一次函数的图象,再求解一次函数与坐标轴的交点的坐标,再利用三角形的面积公式进行计算即可.
    【详解】
    解:如图,令 则
    令 则 解得



    故答案为:4
    【点睛】
    本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.
    4、4
    【解析】
    【分析】
    由一次函数的定义可知x的次数为1,即3-m=1,x的系数不为0,即,然后对计算求解即可.
    【详解】
    解:由题意知
    解得(舍去),
    故答案为:4.
    【点睛】
    本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.
    5、②③⑤
    【解析】
    【分析】
    根据一次函数的定义条件解答即可.
    【详解】
    解:①y=kx当k=0时原式不是一次函数;
    ②是一次函数;
    ③由于=x,则是一次函数;
    ④y=x2+1自变量次数不为1,故不是一次函数;
    ⑤y=22−x是一次函数.
    故答案为:②③⑤.
    【点睛】
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    三、解答题
    1、 (1)y=2x﹣4
    (2)见解析
    (3)x<3
    【解析】
    【分析】
    (1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;
    (2)列表描点连线即可;
    (3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.
    (1)
    解:∵y与x﹣2成正比例,
    ∴设y=k(x﹣2)(k为常数,k≠0),
    把x=1,y=﹣2代入得:﹣2=k(1﹣2),
    解得:k=2,
    即y=k(x﹣2)=2(x﹣2)=2x﹣4,
    所以变量y与x的函数关系式是y=2x﹣4;
    (2)
    列表
    x
    0
    2
    y
    -4
    0
    描点(0,-4),(2,0),
    连线得y=2x﹣4的图象;

    (3)
    从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,
    即点A也在函数y=2x﹣4的图象上,
    即点A是函数y=ax+b和函数y=2x﹣4的交点,
    ∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,
    所以关于x的不等式ax+b>2x﹣4的解集是x<3,
    故答案为:x<3.
    【点睛】
    本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.
    2、 (1)点E,点F;
    (2)()或();
    (3)b的取值范围1<b<2或2<b<3.
    【解析】
    【分析】
    (1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
    (2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
    (3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
    (1)
    解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
    以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
    ∴△ABE为直角三角形,且AE大于AB;

    以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,

    ∴点E与点F是AB关联点,
    点G不在A、B两点垂直的直线上,故不能构成直角三角形,
    故答案为点E,点F;
    (2)
    解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
    ∴△AOB为等腰直角三角形,AB=
    ∴∠ABO=∠BAO=45°,
    以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
    ∴∠OAS=90°-∠BAO=45°,
    ∴△AOS为等腰直角三角形,
    ∴OS=OA=1,点S(1,0),
    设AS解析式为代入坐标得:

    解得,
    AS解析式为,
    ∴,
    解得,
    点P(),
    AP=,AP>AB
    以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
    ∴∠OBR=90°-∠ABO=45°,
    ∴△OBR为等腰直角三角形,
    ∴OR=OB=1,点R(0,-1),
    过点R与AS平行的直线为AS直线向下平移2个单位,
    则BR解析式为,
    ∴,
    解得,
    点P1(),
    AP1=>,
    ∴点P为线段AB的关联点,点P的坐标为()或();

    (3)
    解:过点A与AB垂直的直线交直线y=2x+2于U,
    把△AOB绕点A顺时针旋转90°,得△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(-1,b-1)在直线上,

    ∴,
    ∴当b>1时存在两个“关联点”,
    当b<1时,UA<AB,不满足定义,没有两个“关联点”

    当过点A的直线与直线平行时没有 “关联点”
    与x轴交点X(-1,0),与y轴交点W(0,2)
    ∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
    ∴△OXW顺时针旋转90°,得到△OAB,
    ∴OB=OW=2,
    ∴在1<b<2时,直线上存在两个AB的“关联点”,

    当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
    ∴AO′=AO=1,O′U=OB=b,
    点U(1,1+b)在直线上,

    ∴解得
    ∴当2<b<3时, 直线上存在两个AB的“关联点”,
    当b>3时,UA<AB,不满足定义,没有两个“关联点”

    综合得,b的取值范围1<b<2或2<b<3.
    【点睛】
    本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
    3、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
    (2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【解析】
    【分析】
    (1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
    (2)加工普通板栗a件,则加工精品板栗(4000-a)件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
    (1)
    解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:

    解得x=55y=80,
    答:普通板栗的单价为55元,精品板栗的单价为80元;
    (2)
    解:加工普通板栗a件,则加工精品板栗(4000-a)件,
    由题意得:,
    ∵,1000≤a≤3000,
    ∴当时,所获总利润w最多,
    w=-5×1000+80000=75000,
    ∴,
    答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【点睛】
    题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
    4、 (1)y=-8x+15(0≤x≤)
    (2)小时
    【解析】
    【分析】
    (1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.
    (2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;
    (1)
    由图象可知过(0,15),(1,7)两点,
    设一次函数表达式为y=kx+b,
    ∴,
    解得,
    ∴此一次函数表达式为:y=-8x+15(0≤x≤).
    (2)
    令y=0
    ∴-8x+15=0
    解得:x=,
    答:经过小时蜡烛燃烧完毕.
    【点睛】
    本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
    5、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
    (2)1800万
    【解析】
    【分析】
    (1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
    (1)
    设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意得:,
    解得:
    答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
    (2)
    设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
    由题意可得:1.8(1100-m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100-m)
    =-0.3m+1980,
    ∵-0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值-0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共27页。

    冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共27页。试卷主要包含了如图所示,直线分别与轴,巴中某快递公司每天上午7等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共28页。试卷主要包含了直线不经过点,如图,一次函数y=kx+b,已知一次函数y=kx+b等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map