开学活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练冀教版八年级数学下册第二十一章一次函数同步练习试题(含答案解析)

    2021-2022学年度强化训练冀教版八年级数学下册第二十一章一次函数同步练习试题(含答案解析)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十一章一次函数同步练习试题(含答案解析)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十一章一次函数同步练习试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第二十一章 一次函数综合与测试随堂练习题

    展开

    这是一份数学第二十一章 一次函数综合与测试随堂练习题,共28页。
    八年级数学下册第二十一章一次函数同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、关于一次函数,下列结论不正确的是( )
    A.图象与直线平行
    B.图象与轴的交点坐标是
    C.随自变量的增大而减小
    D.图象经过第二、三、四象限
    2、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
    A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
    3、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )

    A. B. C. D.
    4、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    5、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是( )
    A.m>n B.m=n C.m<n D.无法确定
    6、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )

    A. B. C.3h D.
    7、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    8、下列各点在函数y=﹣3x+2图象上的是(  )
    A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)
    9、关于一次函数的图像与性质,下列说法中正确的是( )
    A.y随x的增大而增大;
    B.当 m=3时,该图像与函数的图像是两条平行线;
    C.不论m取何值,图像都经过点(2,2) ;
    D.不论m取何值,图像都经过第四象限.
    10、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
    2、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.
    一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
    3、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.

    4、若y=mx|m﹣1|是正比例函数,则m的值______.
    5、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)
    三、解答题(5小题,每小题10分,共计50分)
    1、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

    (1)______米;
    (2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;
    (3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?
    2、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).

    (1)求点B的坐标及点O到直线AB的距离;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
    3、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
    (1)若,请写出与的函数关系式.
    (2)若,请写出与的函数关系式.
    (3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
    4、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.

    (1)a=   ;b=   ;
    (2)求点M的坐标(用含m代数式表示);
    (3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
    5、已知一次函数y=kx﹣4,当x=3时,y=﹣1,求它的解析式以及该直线与坐标轴的交点坐标.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
    【详解】
    解:A、函数的图象与直线平行,故本选项说法正确;
    B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
    C、,所以随自变量的增大而减小,故本选项说法正确;
    D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
    故选:D.
    【点睛】
    本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
    2、A
    【解析】
    【分析】
    由 可得一次函数的性质为随的增大而增大,从而可得答案.
    【详解】
    解:点和点是一次函数图象上的两点,,
    随的增大而增大,
    即一定为正数,
    故选A
    【点睛】
    本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
    3、B
    【解析】
    【分析】
    过作轴,可证得,从而得到,,可得到再由,,即可求解.
    【详解】
    解:过作轴,则,

    对于直线,令,得到,即,,
    令,得到,即,,

    为等腰直角三角形,即,,


    在和中,


    ,,即,

    设直线的解析式为,

    b=2-5k+b=3 ,
    解得 .
    过、两点的直线对应的函数表达式是.
    故选:B
    【点睛】
    本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
    4、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    5、A
    【解析】
    【分析】
    由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.
    【详解】
    解:∵k=−2<0,
    ∴y随x的增大而减小,
    又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,
    ∴m>n.
    故选:A.
    【点睛】
    本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
    6、A
    【解析】
    【分析】
    根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
    【详解】
    解:根据图象可知,慢车的速度为 km/h.
    对于快车,由于往返速度大小不变,总共行驶时间是6h,
    因此单程所花时间为3 h,故其速度为 km/h.
    所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
    对于快车,y与t的函数表达式为
    y=,
    联立①②,可解得交点横坐标为t=4.5,
    联立①③,可解得交点横坐标为t=,
    因此,两车先后两次相遇的间隔时间是,
    故选:A.
    【点睛】
    本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
    7、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    8、B
    【解析】
    【分析】
    根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.
    【详解】
    ∵,
    ∴A不符合题意,
    ∵,
    ∴B符合题意,
    ∵,
    ∴C不符合题意,
    ∵,
    ∴D不符合题意,
    故选B.
    【点睛】
    本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.
    9、D
    【解析】
    【分析】
    根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
    【详解】
    A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
    B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
    C、一次函数,过定点,故本选项不正确;
    D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
    故选D.
    【点睛】
    本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
    10、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    二、填空题
    1、一次函数
    【解析】

    2、 积 和 一次
    【解析】

    3、或且
    【解析】
    【分析】
    设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.
    【详解】
    解:如图,设BC与y轴交于点M,

    ,,,
    ∴E点不在AD边上,

    ①如果,那么点E在AB边或线段BM上,
    当点E在AB边且时,
    由勾股定理得,,

    ,,
    当直线经过点,时,.


    当点E在线段BM上时,,
    ,符合题意;
    ②如果,那么点E在CD边或线段CM上,
    当点E在CD边且时,E与D重合;
    当时,由勾股定理得,,

    ,此时E与C重合,
    当直线经过点时,.
    当点E在线段CM上时,,
    且,符合题意;
    综上,当时,的取值范围是或且,
    故答案为:或且.
    【点睛】
    题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.
    4、2
    【解析】
    【分析】
    根据次数等于1,且系数不等于零求解即可.
    【详解】
    解:由题意得
    |m-1|=1,且m≠0,
    解得m=2,
    故答案为:2.
    【点睛】
    本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.
    5、

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共33页。

    初中数学第二十一章 一次函数综合与测试随堂练习题:

    这是一份初中数学第二十一章 一次函数综合与测试随堂练习题,共27页。试卷主要包含了若直线y=kx+b经过一等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共26页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map