数学第二十一章 一次函数综合与测试随堂练习题
展开
这是一份数学第二十一章 一次函数综合与测试随堂练习题,共28页。
八年级数学下册第二十一章一次函数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于一次函数,下列结论不正确的是( )
A.图象与直线平行
B.图象与轴的交点坐标是
C.随自变量的增大而减小
D.图象经过第二、三、四象限
2、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
3、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
4、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为( )
x
…
﹣2
﹣1
0
1
2
…
y1
…
﹣1
0
1
2
3
…
y2
…
﹣5
﹣3
﹣1
1
3
…
A. B. C. D.
5、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是( )
A.m>n B.m=n C.m<n D.无法确定
6、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
7、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
8、下列各点在函数y=﹣3x+2图象上的是( )
A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)
9、关于一次函数的图像与性质,下列说法中正确的是( )
A.y随x的增大而增大;
B.当 m=3时,该图像与函数的图像是两条平行线;
C.不论m取何值,图像都经过点(2,2) ;
D.不论m取何值,图像都经过第四象限.
10、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
2、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
3、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.
4、若y=mx|m﹣1|是正比例函数,则m的值______.
5、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)______米;
(2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;
(3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?
2、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).
(1)求点B的坐标及点O到直线AB的距离;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
3、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
(1)若,请写出与的函数关系式.
(2)若,请写出与的函数关系式.
(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
4、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.
(1)a= ;b= ;
(2)求点M的坐标(用含m代数式表示);
(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
5、已知一次函数y=kx﹣4,当x=3时,y=﹣1,求它的解析式以及该直线与坐标轴的交点坐标.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
【详解】
解:A、函数的图象与直线平行,故本选项说法正确;
B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
C、,所以随自变量的增大而减小,故本选项说法正确;
D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
故选:D.
【点睛】
本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
2、A
【解析】
【分析】
由 可得一次函数的性质为随的增大而增大,从而可得答案.
【详解】
解:点和点是一次函数图象上的两点,,
随的增大而增大,
即一定为正数,
故选A
【点睛】
本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
3、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
b=2-5k+b=3 ,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
4、C
【解析】
【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
【详解】
解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
∴关于x,y的二元一次方程组的解为.
故选:C.
【点睛】
本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
5、A
【解析】
【分析】
由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.
【详解】
解:∵k=−2<0,
∴y随x的增大而减小,
又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,
∴m>n.
故选:A.
【点睛】
本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
6、A
【解析】
【分析】
根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
【详解】
解:根据图象可知,慢车的速度为 km/h.
对于快车,由于往返速度大小不变,总共行驶时间是6h,
因此单程所花时间为3 h,故其速度为 km/h.
所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
对于快车,y与t的函数表达式为
y=,
联立①②,可解得交点横坐标为t=4.5,
联立①③,可解得交点横坐标为t=,
因此,两车先后两次相遇的间隔时间是,
故选:A.
【点睛】
本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
7、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
8、B
【解析】
【分析】
根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.
【详解】
∵,
∴A不符合题意,
∵,
∴B符合题意,
∵,
∴C不符合题意,
∵,
∴D不符合题意,
故选B.
【点睛】
本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.
9、D
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
【详解】
A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
C、一次函数,过定点,故本选项不正确;
D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
故选D.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
10、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
二、填空题
1、一次函数
【解析】
略
2、 积 和 一次
【解析】
略
3、或且
【解析】
【分析】
设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.
【详解】
解:如图,设BC与y轴交于点M,
,,,
∴E点不在AD边上,
;
①如果,那么点E在AB边或线段BM上,
当点E在AB边且时,
由勾股定理得,,
,
,,
当直线经过点,时,.
,
,
当点E在线段BM上时,,
,符合题意;
②如果,那么点E在CD边或线段CM上,
当点E在CD边且时,E与D重合;
当时,由勾股定理得,,
,
,此时E与C重合,
当直线经过点时,.
当点E在线段CM上时,,
且,符合题意;
综上,当时,的取值范围是或且,
故答案为:或且.
【点睛】
题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.
4、2
【解析】
【分析】
根据次数等于1,且系数不等于零求解即可.
【详解】
解:由题意得
|m-1|=1,且m≠0,
解得m=2,
故答案为:2.
【点睛】
本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.
5、
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共33页。
这是一份初中数学第二十一章 一次函数综合与测试随堂练习题,共27页。试卷主要包含了若直线y=kx+b经过一等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共26页。