数学七年级下册4.5 垂线巩固练习
展开相交线,垂线(基础)知识讲解
【学习目标】
1.了解两直线相交所成的角的位置和大小关系,理解邻补角和对顶角概念,掌握对顶角的性质;
2.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;
3.理解点到直线的距离的概念,并会度量点到直线的距离;
4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.
【要点梳理】
知识点一、邻补角与对顶角
1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.
要点诠释:
(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.
(2)邻补角是成对出现的,而且是“互为”邻补角.
(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.
(4)邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.
2. 对顶角及性质:
(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.
(2)性质:对顶角相等.
要点诠释:
(1)由定义可知只有两条直线相交时,才能产生对顶角.
(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.
3. 邻补角与对顶角对比:
角的名称 | 特 征 | 性 质 | 相 同 点 | 不 同 点 |
对顶角 | ①两条直线相交形成的角; ②有一个公共顶点; ③没有公共边. | 对顶角相等. | ①都是两条直线相交而成的角; ②都有一个公共顶点; ③都是成对出现的. | ①有无公共边; ②两直线相交时,对顶角只有2对;邻补角有4对.
|
邻补角
| ①两条直线相交而成; ②有一个公共顶点; ③有一条公共边. | 邻补角互补. |
【高清课堂:相交线 403101 两条直线垂直】
知识点二、垂线
1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.
要点诠释:
(1)记法:直线a与b垂直,记作:;
直线AB和CD垂直于点O,记作:AB⊥CD于点O.
(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:
CD⊥AB.
2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).
要点诠释:
(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.
(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.
3.垂线的性质:
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.
要点诠释:
(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.
(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.
4.点到直线的距离:
定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
要点诠释:
(1) 点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;
(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.
【典型例题】
类型一、邻补角与对顶角
1.如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?
【答案与解析】
解:∠1和∠2,∠3和∠4都不是对顶角.∠1与∠5,∠3与∠6也都不是邻补角.
【总结升华】牢记两条直线相交,才能产生对顶角或邻补角.
举一反三:
【变式】判断正误:
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( )
(2)如果两个角相等,那么这两个角是对顶角.( )
(3)有一条公共边的两个角是邻补角. ( )
(4)如果两个角是邻补角,那么它们一定互补. ( )
(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )
【答案】(1)× (2)× (3)× (4)√ (5)×,反例:∠AOC为120°,射线OB为∠AOC的角平分线,∠AOB与∠AOC互补,且有边公共为AO,公共顶点为O,但它们不是邻补角.
2.如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
【答案与解析】
解:∵ ∠1是∠2的邻补角,∠1=65°,
∴ ∠2=180°-65°=115°.
又∵ ∠1和∠3是对顶角,∠2与∠4是对顶角
∴ ∠3=∠1=65°, ∠4=∠2=115°.
【总结升华】 (1)两条直线相交所成的四个角中,只要已知其中一个角,就可以求出另外三角;(2)求出∠2后用 “对顶角相等”,求∠3和∠4.
举一反三:
【变式】(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为 度.
【答案】145.
解:∵∠BOC=110°,
∴∠BOD=70°,
∵ON为∠BOD平分线,
∴∠BON=∠DON=35°,
∵∠BOC=∠AOD=110°,
∴∠AON=∠AOD+∠DON=145°.
3. 任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.
【答案与解析】
解:如图,
任意两条相交直线,两两相配共组成6对角,在这6对角中,它们的位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;
②有公共顶点,角的两边互为反向延长线.
这6对角为∠1与∠2,∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4,∠3与∠4,其中∠1=∠3,∠2=∠4,∠1+∠2=180°,∠3+∠4=180°,∠1+∠4=180°,∠2+∠3=180°.在位置上∠1与∠3,∠2与∠4是对顶角,∠1与∠2,∠3与∠4,∠l与∠4,∠2与∠3是邻补角.
【总结升华】两条相交的直线,两两相配共组成6对角,这6对角中有:4对邻补角,2对对顶角
类型二、垂线
4.下列语句中,正确的有 ( )
①一条直线的垂线只有一条;
②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;
③两直线相交,则交点叫垂足;
④互相垂直的两条直线形成的四个角一定都是直角.
A.0个 B.1个 C.2个 D.3个
【答案】C
【解析】正确的是:②④
【总结升华】充分理解垂直的定义与性质.
举一反三:
【变式1】直线外有一点P,则点P到直线的距离是( ).
A.点P到直线的垂线的长度.
B.点P到直线的垂线段.
C.点P到直线的垂线段的长度.
D.点P到直线的垂线.
【答案】C
5. (2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为( )
A.35° B. 45° C. 55° D. 65°
【答案】C.
【解析】解:∵∠1=145°,
∴∠2=180°﹣145°=35°,
∵CO⊥DO,
∴∠COD=90°,
∴∠3=90°﹣∠2=90°﹣35°=55°.
【总结升华】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.
【高清课堂:相交线 403101 经典例题3】
举一反三:
【变式】如图, 直线AB和CD交于O点, OD平分∠BOF, OE ⊥CD于点O, ∠AOC=40,
则∠EOF=_______.
【答案】130°.
6. 如图所示,要把水渠中的水引到水池C,在渠岸AB的什么地方开沟,才能使沟最短?画出图来,并说明原因.
【答案与解析】
解:如图,过点C作CD⊥AB,垂足为D.所以在点D沿CD开沟,才能使沟最短,原因是从直线外一点到直线上所有各点的连线中,垂线段最短.
【总结升华】 “如何开沟、使沟最短”,实质上是如何过C点向AB引线段,使线段最短,这就是最熟悉的垂线的性质的应用.
举一反三:
【变式】(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?
(2)经过直线上一点A画的垂线,这样的垂线能画出几条?
(3)经过直线外一点B画的垂线,这样的垂线能画出几条?
【答案】
解:(1)能画无数条;(2)能画一条;(3)能画一条.
【巩固练习】
一、选择题
1.如图所示,∠1和∠2是对顶角的图形共有( )
A.0个 B.1个 C.2个 D.3个
2.以下四个叙述中,正确的有( )
①相等的角是对顶角;②互补的角是邻补角;③两条直线相交,可构成2对对顶角;④对顶角、邻补角都有一个共同特点:两个角有公共的顶点.
A.4个 B.3个 C.2个 D.1个
3.(2014春•琼海期中)在同一平面内两条直线的位置关系可能是( )
A.相交或垂直 B. 垂直或平行
C.平行或相交 D. 平行或相交或重合
4.如图所示,点A到BD的距离是指( )
A.线段AB的长度 B.线段AD的长度 C.线段AE D.线段AE的长度
5.在平面上,过直线上一点可以画这条直线的垂线的条数为 ( )
A.1 B.2 C.3 D.4
6.如图,AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( )
A.26° B.64° C.54° D.以上答案都不对
二、填空题
7.(2014秋•新泰市月考)四条直线两两相交,至多会有 个交点.
8.如图,直线a,b相交,∠1=60°,则∠2=________,∠3=________,∠4=________.
9.如图所示,直线AB,CD,EF相交于点O,CD⊥AB,若∠COE=30°,则∠AOE=_____,∠AOF=______.
10.如图,直线AB与CD的位置关系是________,记作________于点________,此时∠AOD=______=______=______=90°.
11.如图,∠AOB=90°,则AB BO;若OA=3 cm,OB=2 cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.
12.如图所示,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是 .
三、解答题
13.(2015春•怀集县期末)如图,OC⊥AB于点O,OD平分∠BOC,求∠COD的度数.
14.如图,OA⊥OB,OC⊥OD,OE是OD的反向延长线.
(1) ∠AOC等于∠BOD吗?请说明理由;
(2)若∠BOD=32°,求∠AOE的度数.
15.如图所示,小明家在A处,他要去在同一条路上的小丽家或小红家或小华家或小刚家问作业,则最少要走多少米可以问到作业?
【答案与解析】
一、选择题
1. 【答案】B
【解析】只有(3)中的∠1与∠2是对顶角.
2.【答案】C
【解析】③④正确.
3. 【答案】C.
4. 【答案】D
5. 【答案】A
6. 【答案】B
【解析】∠BOE=90°-∠1=64°,又∠AOF=∠BOE=64°.
二、填空题
7.【答案】6.
【解析】如图,可看出四条直线两两相交,至多有6个交点.
8. 【答案】120°, 60°, 120°.
9. 【答案】60°, 120°
【解析】∠AOE=90°-∠COE=60°,
∠AOF=∠AOD+∠DOF=90°+∠EOC=90°+30°=120°.
10.【答案】垂直,AB⊥CD, O,∠BOD, ∠BOC,∠AOC.
【解析】垂直的定义.
11.【答案】>, 3, 2, 垂线段.
【解析】点到直线的距离的定义
12.【答案】50°
【解析】由题意知:∠BOD=∠AOC=∠EOC=50°.
三、解答题
13.【解析】
解:∵OC⊥AB于点O,
∴∠BOC=90°,
∵OD平分∠BOC,
∴∠COD=45°.
14.【解析】
解: (1)∠AOC=∠BOD.
理由:∵ OA⊥OB,OC⊥OD(已知).
∴ ∠AOB=90°,∠COD=90°.
即∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,
∴ ∠AOC=∠BOD(同角的余角相等).
(2)∵ ∠AOB=90°,∠BOD=32°,
∴ ∠AOE=180°-∠AOB-∠BOD=180°-90°-32°=58°.
15.【解析】
解:小明到小红家问作业最近,所以小明至少要走15米.
初中数学人教版七年级下册5.1.2 垂线练习题: 这是一份初中数学人教版七年级下册<a href="/sx/tb_c88515_t7/?tag_id=28" target="_blank">5.1.2 垂线练习题</a>,共12页。
初中数学人教版七年级下册5.1.2 垂线巩固练习: 这是一份初中数学人教版七年级下册5.1.2 垂线巩固练习,共6页。
初中数学华师大版七年级上册2 垂线课堂检测: 这是一份初中数学华师大版七年级上册2 垂线课堂检测,共4页。