02相交线,垂线(提高)知识讲解练习题
展开相交线,垂线(提高)知识讲解
【学习目标】
1.了解两直线相交所成的角的位置和大小关系,理解邻补角和对顶角概念,掌握对顶角的性质;
2.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;
3.理解点到直线的距离的概念,并会度量点到直线的距离;
4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.
【要点梳理】
知识点一、邻补角与对顶角
1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.
要点诠释:
(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.
(2)邻补角是成对出现的,而且是“互为”邻补角.
(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.
(4)邻补角满足的条件:①有公共顶点;②有一条公共边;另一边互为反向延长线.
2. 对顶角及性质:
(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.
(2)性质:对顶角相等.
要点诠释:
(1)由定义可知只有两条直线相交时,才能产生对顶角.
(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.
3. 邻补角与对顶角对比:
角的名称 | 特 征 | 性 质 | 相 同 点 | 不 同 点 |
对顶角 | ①两条直线相交形成的角; ②有一个公共顶点; ③没有公共边. | 对顶角相等. | ①都是两条直线相交而成的角; ②都有一个公共顶点; ③都是成对出现的. | ①有无公共边; ②两直线相交时,对顶角只有2对;邻补角有4对.
|
邻补角
| ①两条直线相交而成; ②有一个公共顶点; ③有一条公共边. | 邻补角互补. |
知识点二、垂线
1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.
要点诠释:
(1)记法:直线a与b垂直,记作:;
直线AB和CD垂直于点O,记作:AB⊥CD于点O.
(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:
CD⊥AB.
2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).
要点诠释:
(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.
(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.
3.垂线的性质:
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.
要点诠释:
(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.
(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.
4.点到直线的距离:
定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
要点诠释:
(1) 点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;
(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.
【典型例题】
类型一、邻补角与对顶角
1.如图所示,AB和CD相交于点O,OM平分∠AOC,ON平分∠BOD,试说明OM和ON成一条直线。
【答案与解析】
解:∵ OM平分∠AOC,ON平分∠BOD(已知),
∴ ∠AOC=2∠AOM,∠BOD=2∠BON(角平分线定义)。
∵∠AOC=∠BOD(对顶角相等),∴∠AOM=∠BON(等量代换)。
∵∠AON+∠BON=180°(邻补角定义),∴∠MON=∠AON+∠AOM=180°(等量代换),
∴ OM和ON共线。
【总结升华】要得出OM和ON成一条直线,就要说明∠MON是平角,从图中可以看出∠AON是∠MON和平角∠AOB的公共部分,所以只要证明它们的非公共部分相等,即∠AOM和∠BON相等,本题得证。
2.如图所示,已知直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:l,求.
【答案与解析】
解:设∠1=x,则∠2=4x.
∵ OE平分∠BOD,∴ ∠BOD=2∠1=2x.
∵ ∠2+∠BOD=180°,即4x+2x=180°,∴ x=30°.
∵ ∠DOE+∠COE=180°,∴ ∠COE=150°.
又∵ OF平分∠COE,∴ ∠COF=∠COE=75°.
∵ ∠AOC=∠BOD=60°,∴ ∠AOF=∠AOC+∠COF=60°+75°=135°.
【总结升华】涉及有比值的题设条件,如a:b=m:n,在解题时设,,这是常用的用方程思想解题的方法.
举一反三:
【变式】已知α的补角是一个锐角,有3人在计算时的答案分别是32°、87°、58°,其中只有一个答案是正确的,求的度数.
【答案】
解法1:∵ α的补角是一个锐角,
∴ α是一个钝角,即90°<α<180°,
∴ .
由已知三人计算出的答案分别为32°、87°、58°,
可知.
∴ .
解法2:由题意可知是一个钝角,即.
如果,那么,不满足;
如果,那么,不满足;
如果,那么,满足,
所以此人计算的答案正确.所以.
【总结升华】在处理数学问题中的误选答案问题时,常采用验算法,如本题的解法2:先利用假设求出相应的α的度数,再验证是否正确.
3.(1)如图(1),已知直线a、b相交于点 O,则(1)图中共有几对对顶角?几对邻补角?
(2)如图(2),已知直线a、b、c、d是经过点O的四条直线,则图(2)中共有几对对顶角(不含平角)?几对邻补角?
【答案与解析】
解:(1)2对对顶角,4对邻补角。
(2)将图(2)拆分为下图:
通过观察图形.不难发现a、b、c、d四条直线两两相交,最多有6个交点,而由(1)知:每个交点处有两对对顶角,有四对邻补角,
对顶角的对数:(对);邻补角的对数:(对)
答:图中共有12对对顶角,24对邻补角
【总结升华】本例分析问题的方法是通过直线的移动,将直线相交于一点转化为直线两两相交.这样移动,可将抽象的问题直观化.因为n条直线两两相交,最多有个交点.每个交点处有两组对顶角,故n条直线相交于一点共有n(n-1)对对顶角,2n(n-1)对邻补角。
举一反三:
【变式】(2015•青岛模拟)如图,直线AB与CD相交所成的四个角中,∠1的邻补角是 ,∠1的对顶角是 .
【答案】∠ 2和∠ 4;∠ 3.
由图形可知,∠1的对顶角是∠3,∠1的邻补角是∠2和∠4.
类型二、垂线
4.下列语句:
①两条直线相交,若其中一个交角是直角,那么这两条直线垂直。
②一条直线的垂线有无数条。
③空间内过一点有且只有一条直线与已知直线垂直;
④两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直。
其中正确的是__________。
【答案】①②
【解析】解此题必须严格按照垂线的定义“两条直线相交成直角”及垂线的性质“过平面内任意一点,即过直线上或直线外任意一点,有且仅有一条直线与已知直线垂直”来作判断。
①正确;②正确,过任意一点都可以作;对于③只有在“同一平面内”才成立,因为空间内,当这点在直线上时,过这点并非只有一条直线与已知直线垂直,故③错误;④错误,必须是两个邻角相等,如下图:
【总结升华】应用垂线的定义及垂线的性质时要把握其中的本质要求:
①关于垂线的定义:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直;
②关于垂线的性质:平面内,过任意一点有且仅有一条直线与已知直线垂直,这条性质说明了已知直线的垂线的“存在性”和“唯一性”,尤其值得注意的是性质中的“任意一点”可能在这条已知直线上,也可能在这条已知直线外。
举一反三:
【变式】在铁路旁有一城镇,现打算从城镇修一条和铁路垂直的道路,这种方案是唯一的,是因为( )
A.经过两点有且只有一条直线
B.两点之问的所有连线中,线段最短
C.在同一平面内,两直线同时垂直同一条直线,则这两直线也互相垂直.
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
【答案】D 提示:注意区分直线性质与垂线性质
5.(2016春•达州校级期中)如图所示,OA⊥OB,OC⊥OE,OD为∠BOC的平分线,∠BOE=20°,求∠DOE的度数.
【思路点拨】首先根据垂直定义以及角平分线的定义得出∠BOD的度数,进而得出∠DOE的度数.
【答案与解析】
解:∵OC⊥OE,
∴∠COE=90°,
∵∠BOE=20°,
∴∠COB=90°+20°=110°,
∵OD为∠BOC的平分线,
∴∠BOD=55°,
∴∠DOE=55°﹣20°=35°.
【总结升华】此题主要考查了角平分线的定义以及垂直定义,正确求出∠COB的度数是解题关键.
举一反三:
【变式】如图,若OM平分∠AOB,且OM ⊥ON,求证:ON平分∠BOC.
【答案】
解:如图,
∵OM平分∠AOB ∴∠1=∠2
又∵OM ⊥ON ∴∠3=90°-∠2
由图可得:∠4=180°-2∠2-∠3=180°-2∠2 -(90°-∠2)=90°-∠2
∴∠3=∠4
∴ ON平分∠BOC
6.如图所示,一辆汽车在直线形公路AB上由A向B行驶,M、N分别是位于公路两侧的村庄.
(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P和点Q的位置(保留作图痕迹).
(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M越来越远?(分别用文字表述你的结论,不必说明)
【答案与解析】
解:(1)过点M作MP⊥AB,垂足为P,过点N作NQ⊥AB,垂足为Q,点P、Q就是要画的两点,如图所示.
(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.
【总结升华】利用垂线段最短解决实际问题是常用的一种方法.
举一反三:
【变式1】如图所示,过A点作AD⊥BC,垂足为D点.
【答案】
解:如图所示
【变式2】点P为直线外一点:点A、B、C为直线上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线的距离是 ( )
A.2 cm B.4 cm C.5 cm D.不超过2 cm
【答案】D.
华师大版七年级上册1 平行线当堂检测题: 这是一份华师大版七年级上册<a href="/sx/tb_c25254_t7/?tag_id=28" target="_blank">1 平行线当堂检测题</a>,共8页。
初中数学华师大版七年级上册2 垂线精练: 这是一份初中数学华师大版七年级上册<a href="/sx/tb_c25250_t7/?tag_id=28" target="_blank">2 垂线精练</a>,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
02中考总复习:实数--知识讲解(提高): 这是一份02中考总复习:实数--知识讲解(提高),共9页。