冀教版第七章 相交线与平行线综合与测试同步测试题
展开这是一份冀教版第七章 相交线与平行线综合与测试同步测试题,共22页。试卷主要包含了如图,下列条件中能判断直线的是,下列命题中,是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图所示,∠1和∠2是对顶角的图形共有( )
A.0个 B.1个 C.2个 D.3个
2、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
3、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )
A.①② B.②③ C.③④ D.②③④
4、如图,点E在的延长线上,能判定的是( )
A. B.
C. D.
5、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
6、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
7、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
8、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
9、下列命题中,是假命题的是( )
A.在同一平面内,过一点有且只有一条直线与已知直线垂直
B.同旁内角互补,两直线平行
C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
D.过一点有且只有一条直线与已知直线平行
10、如图,直线a、b被直线c所截,下列说法不正确的是( )
A.1与5是同位角 B.3与6是同旁内角
C.2与4是对顶角 D.5与2是内错角
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____
2、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
3、如图,直线AB和CD相交于点O,∠BOE=90°,∠DOE=130°,则∠AOC=______.
4、在木条转动过程中,存在一条直线a与直线b不相交的情形,这时我们说直线a与b互相__________.记作“a__________b”.
在同一平面内,不相交的两条直线叫做__________.
注意:平行线的定义包含三层意思:
(1)“在同一 __________”是前提条件;
(2)“不相交”就是说两条直线没有__________;
(3)平行线指的是“两条__________”而不是两条射线或两条线段.
5、命题“a<2a”是 ___命题(填“真”或“假”).
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A在的一边OA上.按要求画图并填空.
(1)过点A画直线,与的另一边相交于点B;
(2)过点A画OB的垂线AC,垂足为点C;
(3)过点C画直线,交直线AB于点D;
(4)直接写出______°;
(5)如果,,,那么点A到直线OB的距离为______.
2、如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,请利用格点和直尺画图,并完成填空.(画出的点、线请用铅笔描粗描黑)
(1)画线段和直线;
(2)过点画的垂线,垂足为点,并标出经过的格点;
(3)线段长是点______到直线______的距离;
(4)三角形的面积是______.
3、如图,AD//BC,的平分线交于点,交的延长线于点,.
求证:.
请将下面的证明过程补充完整:
证明:∵AD//BC,
(理由: ).
平分,
.
.
,
,
(理由: ).
(理由: ).
4、如图,,试说明.
证明:∵(己知),
∴(___________________),
∴____________(同位角相等,两直线平行),
∵(已知),
∴(___________________),
∴(___________________),
∴(两直线平行,同位角相等).
5、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.
【详解】
只有(3)中的∠1与∠2是对顶角.
故选B
【点睛】
本题考查了对顶角的定义,理解对顶角的定义是解题的关键.
2、B
【解析】
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
3、B
【解析】
【分析】
根据平行线的判定逐个判断即可.
【详解】
①∠1=∠2,
②∠3=∠4,
③ADBE,
∠D=∠B,
④∠DCE=∠D,
能推出ABDC的条件为②③
故选B
【点睛】
本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.
4、B
【解析】
【分析】
根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.
【详解】
A. ,,故该选项不符合题意;
B. ,,故该选项符合题意;
C. ,,故该选项不符合题意;
D. ,,故该选项不符合题意;
故选B
【点睛】
本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.
5、D
【解析】
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
6、D
【解析】
【分析】
根据两点之间,线段最短解答即可.
【详解】
解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.
故选:D.
【点睛】
本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.
7、C
【解析】
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
8、C
【解析】
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
9、D
【解析】
【分析】
根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.
【详解】
解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;
B、同旁内角互补,两直线平行,这个命题为真命题;
C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;
D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.
故选:D.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
10、D
【解析】
【分析】
根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
【详解】
解:A、∠1与∠5是同位角,故本选项不符合题意;
B、∠3与∠6是同旁内角,故本选项不符合题意.
C、∠2与∠4是对顶角,故本选项不符合题意;
D、∠5与2不是内错角,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
二、填空题
1、
【解析】
【分析】
先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
【详解】
解:
∠EFG+∠EGD=150°,
∠EGD=
折叠
故答案为:.
【点睛】
本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
2、50°##50度
【解析】
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
3、40°##40度
【解析】
【分析】
先根据角的和差关系可求∠BOD,再根据对顶角相等可求∠AOC.
【详解】
解:∵∠BOE=90°,∠DOE=130°,
∴∠BOD=130°-90°=40°,
又
∴∠AOC=40°.
故答案为:40°.
【点睛】
本题考查了对顶角,关键是根据角的和差关系可求∠BOD.
4、 平行 ∥ 平行线 平面内 交点 直线
【解析】
略
5、假
【解析】
【分析】
根据实数比较大小的原则求解即可.
【详解】
当a为负数时,,
∴命题“a<2a”是假命题.
故答案为:假.
【点睛】
本题考查了命题的真假判定,实数的比较大小,重点是掌握实数比较大小的运算法则.
三、解答题
1、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
【解析】
【分析】
(1)根据垂线的画法即可得;
(2)根据垂线的画法即可得;
(3)根据平行线的画法即可得;
(4)根据平行线的性质可得;
(5)利用三角形的面积公式即可得.
【详解】
解:(1)如图,直线即为所求;
(2)如图,垂线即为所求;
(3)如图,直线即为所求;
(4),
,
,
,
故答案为:90;
(5),
,即,
解得,
即点到直线的距离为,
故答案为:.
【点睛】
本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
2、 (1)见解析
(2)见解析
(3),
(4)
【解析】
【分析】
(1)连接 过两点画直线即可;
(2)观察线段,可得是网格图中3个小正方形组成的小长方形的对角线,利用这个特点画线段即可;
(3)由点到直线的距离的概念可直接得到答案;
(4)利用长方形的面积减去周围三个三角形的面积即可.
(1)
解:如图,线段 直线即为所求作的线段与直线,
(2)
解:如(1)中图,即为所求作的垂线,为格点,为垂足.
(3)
解:由点到直线的距离的概念可得:线段长是点到直线的距离.
故答案为:
(4)
解:
故答案为:
【点睛】
本题考查的是画线段,直线,利用网格图作已知直线的垂线,点到直线的距离,网格三角形的面积的计算,掌握以上基础知识是解本题的关键.
3、;两直线平行,内错角相等;;;;;同位角相等,两直线平行;两直线平行,同旁内角互补.
【解析】
【分析】
根据平行线的性质与判定,角平分线的意义,补全证明过程即可.
【详解】
(理由:两直线平行,内错角相等),
平分,
,
.
,
,
(理由:同位角相等,两直线平行).
(理由:两直线平行,同旁内角互补).
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
4、垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行
【解析】
【分析】
根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.
【详解】
证明:∵(己知),
∴(垂直定义),
∴ABCD(同位角相等,两直线平行),
∵(已知),
∴(内错角相等,两直线平行),
∴(平行于同一条直线的两条直线平行),
∴(两直线平行,同位角相等).
故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行
【点睛】
本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.
5、(1)见解析;(2)72°
【解析】
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共24页。试卷主要包含了以下命题是假命题的是,下列命题不正确的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了如图,直线b等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。