冀教版七年级下册第七章 相交线与平行线综合与测试习题
展开冀教版七年级数学下册第七章相交线与平行线章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )
A.只有 B.只有 C.和均可 D.和均可
2、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )
A. B. C. D.
3、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
4、如图,点O在直线BD上,已知,,则的度数为( ).
A.20° B.70° C.80° D.90°
5、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )
A.1cm B.2cm C.3cm D.4cm
6、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
7、如图,①,②,③,④可以判定的条件有( ).
A.①②④ B.①②③ C.②③④ D.①②③④
8、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
9、下列各组图形中,能够通过平移得到的一组是( )
A. B.
C. D.
10、如图,点E在的延长线上,能判定的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.
2、如图,直线mn.若,,则的大小为_____度.
3、如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠ABC的补角,则∠BAH的度数是______.
4、按要求完成下列证明:如图,点,,分别是三角形的边,,上的点,,.求证:.
证明:,
.
,
.
.
5、如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE:S△AEF的比值为___.
三、解答题(5小题,每小题10分,共计50分)
1、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
2、如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.
(1)过点C画线段AB的平行线CF;
(2)过点A画线段BC的垂线,垂足为G;
(3)过点A画线段AB的垂线,交BC于点H;
(4)线段 的长度是点H到直线AB的距离;
(5)线段AG、AH、BH的大小关系是 (用“<”连接),理由是 .
3、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
4、如图,,,,,与相交于点.
(1)求证:;
(2)求的度数.
5、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由平行线之间的距离的定义判定即可得解.
【详解】
解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,
线段和都可以示直线与之间的距离,
故选:C.
【点睛】
本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.
2、B
【解析】
【分析】
根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.
【详解】
解:OE是的平分线,
可作为说明命题“相等的角是对顶角”为假命题的反例
故选:B.
【点睛】
本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.
3、D
【解析】
略
4、B
【解析】
【分析】
直接利用垂直的定义结合互余得出答案.
【详解】
解:∵点O在直线DB上, OC⊥OA,
∴∠AOC=90°,
∵∠1=20°,
∴∠BOC=90°−20°=70°,
故选:B.
【点睛】
此题主要考查了垂线以及互余,正确把握相关定义是解题关键.
5、C
【解析】
【分析】
根据题意可得 的长度等于平移的距离,即可求解.
【详解】
∵△ABC沿BC方向平移到△DEF的位置,
∴点 的对应点为 ,即 的长度等于平移的距离,
∵BE=3cm,
∴平移的距离为3cm.
故选:C
【点睛】
本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.
6、C
【解析】
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
7、A
【解析】
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
8、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
9、B
【解析】
【分析】
根据平移的性质对各选项进行判断.
【详解】
A、左图是通过翻折得到右图,不是平移,故不符合题意;
B、上图可通过平移得到下图,故符合题意;
C、不能通过平移得到,故不符合题意;
D、不能通过平移得到,故不符合题意;
故选B.
【点睛】
本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.
10、B
【解析】
【分析】
根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.
【详解】
A. ,,故该选项不符合题意;
B. ,,故该选项符合题意;
C. ,,故该选项不符合题意;
D. ,,故该选项不符合题意;
故选B
【点睛】
本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.
二、填空题
1、15
【解析】
【分析】
根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.
【详解】
解:由题意可知,
地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,
所以地毯的长度至少需要 12+3=15(米).
故答案为:15.
【点睛】
本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.
2、70
【解析】
【分析】
如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
故答案为:70.
【点睛】
本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.
3、60°##60度
【解析】
【分析】
设∠BAF=x°,∠BCF=y°,由题意知∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD,由AD∥CE可得AD∥FN∥BM∥CE,有∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∠AFC=(x+2y)°,∠ABC=(2x+y)°由于∠F的余角等于2∠B的补角,可知90﹣(x+2y)=180﹣2(2x+y),进行求解可得x的值,进而可求出∠BAH的值.
【详解】
解:设∠BAF=x°,∠BCF=y°
∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F
∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,
如图,过点B作BM∥AD,过点F作FN∥AD
∵AD∥CE
∴AD∥FN∥BM∥CE
∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°
∴∠AFC=(x+2y)°,∠ABC=(2x+y)°
∵∠AFC的余角等于2∠ABC的补角
∴90﹣(x+2y)=180﹣2(2x+y)
解得:x=30
∴∠BAH=60°
故答案为:60°.
【点睛】
本题考查了角平分线,平行线的性质,余角、补角等知识.解题的关键在于正确的表示角度之间的数量关系.
4、,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行
【解析】
【分析】
由题意知由两直线平行,内错角相等可得,由,可知.
【详解】
解:证明:
两直线平行,内错角相等)
(已知)
(等量代换)
(同位角相等,两直线平行)
故答案为:,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定.解题的关键在于用角的数量关系判断两直线的位置关系.
5、1
【解析】
【分析】
连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.
【详解】
解:连接BD,如下图所示:
∵BC∥AD,
∴S△AFD= S△ABD,
∴S△AFD- S△AED= S△ABD- S△AED,
即S△AEF= S△BED,
∵AB∥CD,
∴S△BED=S△BEC,
∴S△AEF=S△BEC,
∴S△BCE:S△AEF=1.
故答案为:1.
【点睛】
本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.
三、解答题
1、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【解析】
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
2、 (1)见解析
(2)见解析
(3)见解析
(4)AH;
(5)AG<AH<BH,点到直线的距离,垂线段最短
【解析】
【分析】
(1)根据平行线的判定结合网格画AB的平行线CF即可;
(2)根据垂线的定义,结合网格过点A画线段BC的垂线段即可;
(3)根据垂线的定义,结合网格过点A画线段AB的垂线,交BC于点H即可;
(4)点H到直线AB的距离是过点H垂直于AB的垂线段HA的长;
(5)根据点到直线的距离,垂线段最短求解即可.
(1)
解:如图所示,直线CF即为所求;
(2)
解:如图所示,线段AG即为所求;
(3)
解:如图所示,线段AH即为所求;
(4)
解:由题意得线段AH的长度是点H到直线AB的距离;
故答案为:AH;
(5)
解:∵AG⊥BH,
∴AG<AH,
∵AH⊥AB,
∴AH<BH,
∴AG<AH<BH,理由是:点到直线的距离,垂线段最短,
故答案为:AG<AH<BH,点到直线的距离,垂线段最短.
【点睛】
本题主要考查了画平行线,画垂线,点到直线的距离,垂线段最短等等,熟知相关知识是解题的关键.
3、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
4、 (1)见解析
(2)54°
【解析】
【分析】
(1)由平行线的性质可得,等量代换可得,从而,然后根据根据平行线的传递性可证结论成立;
(2)过点G作GM∥AB,由平行线的性质可得∠DCG=∠CGM,再由已知条件及角的和差关系可得答案.
(1)
证明:,
,
,,
∴,
,
,
.
(2)
解:如图,过点作,
,
由(1)知,,
,
,
,,
,,
,
,
,即.
【点睛】
本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
5、(1)见解析;(2)150°
【解析】
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
冀教版七年级下册第七章 相交线与平行线综合与测试课时训练: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共24页。试卷主要包含了以下命题是假命题的是,下列命题不正确的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共22页。试卷主要包含了如图,直线a,下列说法中不正确的是,下列说法正确的有等内容,欢迎下载使用。